Вся математика за 1-й – 5-й класс просто и доходчиво. Книга со ссылками на видеоролики - стр. 3
После этого я спрашиваю ученика: «Какой есть закон (или правило) для сложения?». Если он не может сразу сказать, я намекаю – «Можно местами поменять А и В?». Часто сразу говорят «От перемены мест слагаемых сумма не меняется!». Правильные ответы надо ВСЕГДА подтверждать – говорить «точно», или «хорошо», или «отлично», или ещё как-то похоже. И это подтверждение – ОЧЕНЬ важная часть обучения, которая часто не выполняется учителями и родителями. Всегда давайте подтверждения детям (и взрослым тоже)! Кстати, если ученик ошибается, ему всё равно надо дать подтверждение. Но желательно придумать что-то редко используемое и не очень расстраивающее. Например, «упс», «опля» и т. п. Так как нам слишком часто говорят «ты не прав!», «ты ошибся», «не верно» и такая фраза может расстроить ученика и замедлить обучение.
Затем спрашиваю: «Как мы находим неизвестное слагаемое?» Когда ученик отвечает, я говорю «правильно» и объясняю – почему я спрашиваю такие простые вещи: хорошо известные слова «мама», «школа», «кока-кола» человек повторял много-много раз и после этого он уже не может их забыть, а многие слова из математики он говорит только тогда, когда его изредка спрашивают на уроке. Мало кто повторяет ВСЛУХ эти слова, когда делает домашнее задание или болтает с друзьями. Я объясняю, что для того, чтобы запомнить слово и сделать его своим – надо его ИСПОЛЬЗОВАТЬ. Слова используют, когда их произносят. Вот потому мои ученики у меня на занятиях часто говорят больше, чем я. Я-то эти слова знаю отлично, а им надо потренироваться!
После этого я начинаю игру-тренировку: показываю на какое-то число в примере на сложение, а ученик называет, чем оно является – слагаемым или суммой. Если он ответил правильно – я даю подтверждение «да», или «точно», или «хорошо». Или как-то ещё, но ОЧЕНЬ важно давать подтверждения верному ответу. В ходе такой тренировки ученик много раз произносит слова «слагаемое» и «сумма». Он их использует! В самом начале, когда я только познакомился с открытиями Рона Хаббарда в обучении, я пытался просить учеников составлять предложения с этими словами – это самый простой и легкий способ для достижения полного понимания слов, который как раз и рекомендует Рон Хаббард в своих книгах о правильном обучении.
Но оказалось, что для детей не так легко составить предложения с математическими словами, и это требует много времени и напряжения ума. Тем более что примеры касаются только математики и при непонимании предмета будут слишком однообразными. И я стал применять игру-тренировку. Главное – чтобы слова использовались (произносились). Ученики обычно умеют решать простые примеры, а вот понять – что про эти примеры говорят учителя или пишут в учебнике или в контрольной – часто не могут, так как эти слова не стали «родными». Так что после нескольких минут (редко – часов) такой тренировки слова усваиваются и понимаются. После этого ученик будет сразу понимать – что говорит учитель, или что написано в учебнике или в контрольной.