Руководство по спортивной медицине - стр. 42
5. Взаимосвязь Г ↔ Ф реализуется гетерохронным накоплением структур клетки в ответ на увеличение функции. Гетерохронизм выражается в том, что быстро обновляемые, короткоживущие белки мембран сарколеммы, СПР и митохондрий накапливаются быстрее, а медленно обновляемые, длительно живущие сократительные белки миофибрилл – медленнее. В результате в начальной стадии гиперфункции сердца обнаруживается увеличение активности основных дыхательных ферментов и количества митохондрий, а также мембранных структур, выделяемых в микросомальной фракции на единицу массы миокарда. Аналогичное явление доказано в нейронах, клетках почек, печени и др. органов.
Если нагрузка на орган и его функция находятся в пределах физиологического оптимума, то это избирательное увеличение массы и мощности мембранных структур, ответственных за ионный транспорт, может закрепиться; при чрезмерной нагрузке рост миофибрилл приводит к тому, что удельный вес этих структур в клетке становится нормальным или даже уменьшенным. При всех условиях опережающее увеличение массы структур, ответственных за транспорт ионов и энергообеспечение, играет важную роль в развитии долговременной адаптации. Эта роль определяется тем, что при большой нагрузке увеличение функции миоцита лимитировано, во-первых, недостаточной мощностью мембранных механизмов, ответственных за своевременное удаление из саркоплазмы Са>2+, поступающего туда при каждом цикле возбуждения, и, во-вторых, недостаточной мощностью механизмов ресинтеза АТФ, в увеличенном количестве расходуемой при каждом сокращении. Опережающее, избирательное увеличение массы мембран, ответственных за транспорт ионов и митохондрий, осуществляющих ресинтез АТФ, «расширяет» звено, лимитирующее функцию, и становится основой устойчивой долговременной адаптации.
6. Реализация Г ↔ Ф в высокодифференцированных кардиомиоцитах осуществляется так, что увеличение функции приводит к повышению скорости считывания РНК с имеющихся генов, репликации ДНК, увеличению количества хромосомных наборов и заключенных в них генов.
По мере физиологического роста в сердце у высших обезьян и человека в результате синтеза ДНК увеличивается плоидность ядер гипертрофированных кардиомиоцитов. Так, у ребенка с массой сердца 150 г 45 % ядер мышечных клеток содержат диплоидные количества ДНК, а 47 % – тетраплоидные. У взрослого человека при массе сердца 250 – 500 г диплоидных ядер всего 20 %, 40 % содержат октаплоидные и 16-плоидные количества ДНК. При выраженной компенсаторной гипертрофии, когда масса сердца составляет 500 – 700 г, доля октаплоидных и 16-плоидных ядер достигает 60 – 90 %. Следовательно, кардиомиоциты человека в течение всей жизни сохраняют способность осуществлять репликацию ДНК и увеличивать число локализованных в ядре геномов. Это обеспечивает обновление возросшей территории гипертрофированной клетки и, возможно, составляет предпосылку для деления некоторых полиплоидных ядер и даже самих клеток.