Размер шрифта
-
+

Путеводитель для влюбленных в математику - стр. 11

Количество целых чисел между 1 и N, которые мы вычеркнули, равно N / 2.

Вычеркнем из оставшихся чисел те, которые делятся на 3. Вот что получится:

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, …

Мы удалили треть оставшихся чисел[24]. Осталось две трети, а от изначального количества –

Продолжим в том же духе и вычеркнем числа, делящиеся на 5, удалив таким образом пятую часть оставшихся чисел. Получится

чисел. Вот что останется:

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, …

Дальше мы вычеркиваем числа, делящиеся на 7, оставив шесть седьмых от нашего перечня, и будем двигаться по этому пути, пока не дойдем до числа P.

В конце концов количество тех чисел, которые мы не вычеркнули, станет равно



Так как все числа от 1 до N, кроме 1, делятся на какое-то простое число, выражение (C) должно быть равно 1. Верно? Вспомним, что N = 2 × 3 × 5 × 7 × 11 × 13 × … × P, подставим это произведение в выражение (C) и перегруппируем множители:



Это дает 1 × 2 × 4 × 6 × … × (P – 1), что существенно больше 1! Выражение (C) должно быть равно 1, но очевидным образом не равно 1. Ошибка заключалась в изначальном предположении о том, что количество простых чисел конечно. Следовательно, их бесконечно много.

Две сложные задачи

Есть много захватывающих вопросов о простых числах. Здесь я расскажу про две самые печально известные проблемы.

Хотя простых чисел бесконечно много, они встречаются все реже и реже, когда мы последовательно двигаемся от единицы к бесконечности. Позже (в главе 7) мы проанализируем среднюю разность между двумя соседними большими простыми числами. Однако простые числа все равно часто встречаются рядом, отличаясь на две и более единицы (единственная пара с отличием на один – 2 и 3). Если простые числа отличаются на две единицы, их называют простыми числами-близнецами, или парными простыми числами. Наименьшая пара близнецов – числа 3 и 5. Между 1 и 10 000 есть 205 пар близнецов, последние – числа 9929 и 9931.

Вопрос: простых чисел-близнецов бесконечно много?

Надо признать, что это неизвестно до сих пор.

Вот другой вопрос. Принято считать, что впервые его поставил немецкий математик Кристиан Гольдбах (1690–1764). Ему стало любопытно: какие четные числа (кроме 2) можно представить в качестве суммы двух простых? Вот пример:


Вопрос: можем ли мы продолжать этот ряд бесконечно? Гольдбах предположил, что любое четное число (за исключением 2) представляет собой сумму двух простых.

Но на самом деле мы до сих пор не знаем этого наверняка.

Страница 11