Форма реальности - стр. 14
«Транзитивность равенства» – одно из общих понятий Евклида, это арифметический принцип, который он излагает в начале своего труда наряду с геометрическими аксиомами. Принцип таков: две вещи, равные третьей, равны между собой[52].
Не стану отрицать, что есть определенное удовлетворение в сведении всего к таким крошечным, точным шагам. Они так убедительно складываются вместе, словно детальки лего! И подобное ощущение учителю действительно хочется передать.
Но все же… разве не очевидно, что два прямых угла – это одна и та же вещь, просто расположенная на странице в разных местах с разной ориентацией? На самом деле Евклид считал равенство прямых углов четвертой из аксиом – основных правил игры, которые принимаются как истинные без доказательства и из которых вытекает все остальное. Так почему современная школа требует от учеников предъявлять доказательство этого факта, если даже Евклид сказал: «Да ладно, это очевидно»? Потому что существует много разных наборов аксиом, из которых можно вывести геометрию на плоскости, и поступать в точности так, как Евклид, больше не считается самым строгим или педагогически выигрышным приемом. В 1899 году Давид Гильберт переписал всю аксиоматику с нуля, а аксиомы современной американской школы обычно следуют системе Джорджа Биркгофа 1932 года.
Аксиома это или нет, но тот факт, что два прямых угла равны, ученик просто знает. Вы не можете винить школьников в том, что они разочаруются, когда вы им скажете: «Вы думали, что знаете это, но на самом деле не знали, пока не выполнили все шаги в доказательстве в два столбца». Даже несколько обидно!
Слишком многое на уроках геометрии посвящено доказательству очевидных вещей. Я хорошо помню занятия топологией на первом курсе колледжа. Профессор, весьма выдающийся почтенный ученый, потратил две недели на доказательство следующего факта: если вы проведете на плоскости замкнутую кривую без самопересечений, то, какой бы извилистой и причудливой она ни была, она разделит плоскость на две части: одна внутри, а вторая – снаружи кривой.
С одной стороны, как оказалось, весьма сложно написать формальное доказательство этого факта, известного как теорема Жордана о замкнутых кривых. С другой – эти две недели я провел в состоянии едва сдерживаемого раздражения. Неужели в этом и заключается математика? Делать очевидное трудоемким? Читатель, я просто отключался, так же как и мои однокурсники, среди которых были будущие математики и другие ученые. Парочка, сидевшая передо мной, – весьма серьезные студенты, которые впоследствии получат степени по математике в лучших университетах, – начинала энергично обниматься всякий раз, когда выдающийся почтенный ученый поворачивался к доске, чтобы записать очередной тонкий аргумент о небольшом видоизменении многоугольника. Я имею в виду, что они реально заводились, как будто их подростковая страсть друг к другу могла каким-то образом перенести их в другую часть континуума, где такого доказательства еще нет.