Размер шрифта
-
+

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - стр. 14

. Важно отметить, что модели машинного обучения с учителем обычно не учатся непрерывно: они учатся на основе набора тренировочных данных, а затем продолжают использовать ту же модель, если только не задействуется новый набор тренировочных данных, на основе которого обучаются новые модели.

Модели машинного обучения опираются на статистику. Оценить их растущую ценность можно в сравнении с традиционной аналитикой. Как правило, они точнее традиционных «кустарных» аналитических моделей, основанных на человеческих предположениях и регрессионном анализе, но при этом они сложнее и хуже поддаются интерпретации. Автоматизированные модели машинного обучения могут создаваться намного быстрее и описывать более детализированные наборы данных, чем в случае с традиционным статистическим анализом. При наличии необходимого объема данных для обучения модели глубокого обучения очень хорошо справляются с такими задачами, как распознавание изображений и голоса. Они работают гораздо лучше, чем ранние автоматизированные системы для решения этих задач, а в некоторых сферах их возможности уже сравнимы с человеческими или даже превосходят их.

Обработка естественного языка (ОЕЯ)

С 1950-х гг. перед исследователями ИИ стояла цель научить машину распознавать язык человека. В эту сферу, называемую обработкой естественного языка, входят такие варианты использования технологий, как распознавание речи, текстовый анализ, перевод, генерация текста и решение других языковых задач. ОЕЯ использовали 53 % компаний, участвовавших в опросе об осведомленности о когнитивных технологиях. Есть два основных подхода к ОЕЯ – статистический и семантический. Статистическая ОЕЯ основана на машинном обучении и сегодня совершенствуется быстрее семантической. Она требует большого корпуса, или совокупности, текстов, на которых учится. Например, для перевода требуется большой объем переведенных текстов, статистически анализируя которые система узнает, что испанское и португальское слово amor находится в тесной статистической взаимосвязи с английским словом love. Этот метод использует «грубую силу», однако часто он довольно эффективен.

До последнего десятилетия внимание уделялось исключительно семантической ОЕЯ, и она демонстрирует умеренную эффективность, если система удачно натренирована на распознавание слов, синтаксиса и концептуальных связей. Однако обучение языку и инженерия знаний (которая часто предполагает создание графа знаний в определенной области) требуют много времени и сил. Для этого необходима разработка онтологий или моделей отношений между словами и фразами. Хотя создавать семантические модели ОЕЯ нелегко, сегодня этим занимаются несколько систем интеллектуальных агентов.

Страница 14