Размер шрифта
-
+

Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности - стр. 17

.

Некоторые системы РАП уже в определенной степени наделены интеллектом. Они могут «наблюдать» за тем, как работают их коллеги-люди (например, как они отвечают на частые вопросы клиентов), и имитировать их действия. Другие сравнивают процесс автоматизации с машинным зрением. Как и физические роботы, системы РАП постепенно становятся более интеллектуальными, а для управления их поведением начинают использоваться другие типы технологий ИИ.

Я описал эти технологии по отдельности, но все чаще они объединяются и интегрируются. Однако сегодня человеку, принимающему бизнес-решения, очень важно знать, какие технологии какие задачи выполняют. Директор по информационным технологиям Global Inc. Кришна Натан отмечает, что в 2018 г. один из ключевых приоритетов его компании – «помочь акционерам понять, на что способен и не способен ИИ, чтобы использовать его должным образом»[17]. Возможно, в будущем эти технологии окажутся так тесно переплетены, что необходимость в таком понимании исчезнет, а возможно, технологии вообще станут неотделимы друг от друга.

ИИ в сообществе поставщиков технологий

В этой книге я в основном рассказываю об использовании когнитивных технологий крупными предприятиями в таких сферах, как предоставление финансовых услуг, производство и телекоммуникация. Но большая часть работы, выполняемой крупными коммерческими предприятиями, стала возможной благодаря исследованиям и разработкам, проводившимся в тех же местах, где в 2000-х гг. развивались технологии больших данных (включая Hadoop, Pig и Hive). В этот период Google, Facebook и в меньшей степени Yahoo! направляли значительные усилия на развитие технологий ИИ. Эти компании располагали огромным объемом данных для анализа, огромным количеством денег (по крайней мере в случае Google и Facebook) и прочными связями с учеными.

Google

Пожалуй, не стоит удивляться, что компания Google стала самым активным разработчиком и пользователем технологий ИИ среди интернет-гигантов (а возможно, и среди всех компаний мира). Работая в сотрудничестве со стэнфордским профессором Эндрю Ыном, Google начала исследовать ИИ (в частности, глубокое обучение) в лабораториях Google X еще в 2011 г. Этот проект получил название Google Brain. Главным образом в рамках него изучалась технология глубокого обучения, которая использовалась для распознавания изображений и решения других задач. К 2012 г. группа исследователей решила одну из самых важных проблем человечества – как заставить машину распознать фотографию кота в интернете.

В следующем году Google наняла исследователя из Университета Торонто Джеффри Хинтона, который помог возродить нейронные сети. В 2014 г. Google купила лондонскую компанию DeepMind, весьма компетентную в сфере глубокого обучения. Инструменты группы были использованы, чтобы помочь созданной Google программе AlphaGo, играющей в древнюю игру го, победить одного из лучших игроков в мире. В 2016 г. команда Google Brain помогла Google существенно улучшить точность переводов Google-переводчика. К тому году Google и ее материнская компания Alphabet использовали машинное обучение более чем в 2700 проектах, включая разработку алгоритмов поиска (RankBrain), создание беспилотных автомобилей (теперь этим занимается Waymo – дочерняя компания Alphabet) и усовершенствование медицинской диагностики (дочерняя компания Calico)

Страница 17