Теория пределов и нейросети. Практикум - стр. 4
[ f(x) = \frac{\frac{3(x – 5)}{4} – \frac{x – 5}{4}}{x^2 – 5x} ]
[ f(x) = \frac{\frac{2(x – 5)}{4}}{x^2 – 5x} ]
[ f(x) = \frac{\frac{1}{2}(x – 5)}{x(x – 5)} ]
[ f(x) = \frac{1}{2x} ]
Теперь вычисляем предел ( f(x) ) при ( x \to 5 ):
[ \lim_{{x \to 5}} \frac{1}{2x} = \frac{1}{2 \cdot 5} = \frac{1}{10} ]
Итак, предел функции ( f(x) = \frac{\sqrt{1 + 3x} – \sqrt{2x + 6}}{x^2 – 5x} ) при ( x ) стремящемся к ( 5 ) равен ( \boxed{\frac{1}{10}} ).Ответ: 1/10.
10. Найти предел функции f(x) = (7^x – 3^x)/x при x стремящемся к 0.
GPTutor
Чтобы найти предел функции ( f(x) = \frac{7^x – 3^x}{x} ) при ( x ) стремящемся к ( 0 ), мы можем использовать формулу для предела функции, в которой в знаменателе стоит ( x ).
Прежде чем вычислять, заметим, что подстановка ( x = 0 ) напрямую в функцию даст неопределённость ( \frac{0}{0} ), поэтому используем разложение в ряд Тейлора для функций ( 7^x ) и ( 3^x ) в окрестности точки ( x = 0 ):
[ 7^x \approx 1 + \ln(7) \cdot x ]
[ 3^x \approx 1 + \ln(3) \cdot x ]
Теперь выразим ( f(x) ) с использованием этих разложений:
[ f(x) = \frac{7^x – 3^x}{x} \approx \frac{(1 + \ln(7)x) – (1 + \ln(3)x)}{x} ]
[ f(x) = \frac{\ln(7)x – \ln(3)x}{x} ]
[ f(x) = \ln(7) – \ln(3) ]
Таким образом, предел функции ( f(x) = \frac{7^x – 3^x}{x} ) при ( x ) стремящемся к ( 0 ) равен ( \boxed{\ln\left(\frac{7}{3}\right)} ).Ответ:ln7 – ln3.
Более детальные комментарии к данным решениям, на мой взгляд, не нужны.
Попробуйте самостоятельно найти пределы следующих функции:
1) f(n) = (1 – 2n)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ: – 2/3.
2) f(n) = (n^2 + 1)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ:1.
3) f(x) = 2x/(x^2 – 4) – 1/(x – 2) при x стремящейся к 2. Правильный ответ:1/4.
Решение будет приведено в следующей главе.
Глава 2
Выполнение заданий из главы 1.
1) f(n) = (1 – 2n)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ: – 2/3.
2) f(n) = (n^2 + 1)/(3n – 2) при n стремящейся к бесконечности. Правильный ответ:1.
3) f(x) = 2x/(x^2 – 4) – 1/(x – 2) при x стремящейся к 2. Правильный ответ:1/4.
Посмотрим, как с ними справится нейросеть GPTutor
1)f(n) = (1 – 2n)/(3n – 2) при n стремящейся к бесконечности.
GPTutor
Функция ( f(n) = \frac{1 – 2n}{3n – 2} ) при ( n ) стремящемся к бесконечности можно проанализировать с помощью предела:
[ \lim_{{n \to \infty}} f(n) = \lim_{{n \to \infty}} \frac{1 – 2n}{3n – 2} ]
Чтобы найти предел этой функции при ( n ) стремящемся к бесконечности, можно использовать правило Лопиталя (если оно применимо), либо анализировать асимптотическое поведение числителя и знаменателя.