Размер шрифта
-
+

Таблица квадратов чисел до 100 за неделю. Как выучить квадраты чисел без зубрежки за неделю - стр. 4

91>2=8281

92>2=8464

93>2=8649

94>2=8836

95>2=9025

96>2=9216

97>2=9409

98>2=9604

99>2=9801

Далее даю задание ученикам: Как найти квадрат числа не прибегая к полному вычислению каким-либо способом. По-моему опыту с таким заданием справляются ученики 7—8 класса. Ученики подмечают, что ряд чисел, составленный из разрядов тысяч и сотен увеличивается на 2: 82, 84, 86, 88, 90, 92, 94, 96, 98. В тоже время ряд чисел, составленный из разрядов десятков и единиц это полные квадраты убывающего ряда чисел (9, 8, 7, 6, 5, 4, 3, 2, 1): 81, 64, 49, 36, 25, 16, 09, 04, 01.

Ещё немного подумав и отвечая на направляющие вопросы наконец самостоятельно находят способ как получать квадраты числа зная само число от 91 до 99. Совершив это маленькое открытие, они очень довольны собой и математика немного становится любимым предметом. А для кого-то эта красота мира чисел оказывает решающее значение и определяет выбор жизненного пути.

Для тех, кто не догадался о способах получения квадрата по числу от 91 до 99 приведу две формулы:

>2= (100‒ (10‒Х) *2) *100+ (10-Х)> 2;

>2= (80+Х*2) *100+ (10-Х)> 2

На самом деле формулы действительны для чисел от 90 до 99, но вычислять 90 таким способом слишком неоптимально. Поэтому число 90 исключено из этого промежутка. Вторая формула из представленных более предпочтительна.

Метод основания

Метод применяется как частный случай умножения двух чисел, которые близки к какому-либо числу. Это близкое число называется основанием. Сам метод возведения таким способом будем называть методом основания. В качестве основания выбираются числа заканчивающиеся на 0. Если число заканчивается на 0, то на такое число легко умножать, так как здесь умножать нужно на однозначное число и потом приписать к результату 0 (умножить на 10).

Число которое заканчивается на 0 часто называют основанием. А сам метод называется метод по основанию или короче метод основания.

Правило:

Чтобы умножить два числа нужно увеличить и убавить оба числа на одно и тоже число (так чтобы одно из них стало основанием) и прибавить квадрат числа на которое изменяли оба числа.

Примеры:

1) 42>2

42>2= (42+2) * (42—2) +2>2=44*40+4=1764

2) 83>2= (83+3) * (83—3) +3>2=86*80+9=6889

3) Данное правило можно использовать для умножения не только квадратов

76*77= (80—4) * (80—3) =80*80—4*80—3*80+ (-4) * (-3) =80* (80-3-4) +12=80*73+12=5840+12=5852

Доказательство:

(10X+Y) * (10X+Z) =10X*10X+10XY+10XZ+Y*Z=10X * (10X+Y+Z) +Y*Z

Таким образом получили что основание для данного умножения будет 10х. А другое число (10X+Y+Z) получается, если к первому числу (10X+Y) добавить единицы Z второго числа, или наоборот ко второму числу 10X+Z добавить единицы Y первого числа. К получившемуся произведению добавить произведение единиц Y*Zпервого и второго чисел.

Страница 4