Таблица квадратов чисел до 100 за неделю. Как выучить квадраты чисел без зубрежки за неделю - стр. 4
91>2=8281
92>2=8464
93>2=8649
94>2=8836
95>2=9025
96>2=9216
97>2=9409
98>2=9604
99>2=9801
Далее даю задание ученикам: Как найти квадрат числа не прибегая к полному вычислению каким-либо способом. По-моему опыту с таким заданием справляются ученики 7—8 класса. Ученики подмечают, что ряд чисел, составленный из разрядов тысяч и сотен увеличивается на 2: 82, 84, 86, 88, 90, 92, 94, 96, 98. В тоже время ряд чисел, составленный из разрядов десятков и единиц это полные квадраты убывающего ряда чисел (9, 8, 7, 6, 5, 4, 3, 2, 1): 81, 64, 49, 36, 25, 16, 09, 04, 01.
Ещё немного подумав и отвечая на направляющие вопросы наконец самостоятельно находят способ как получать квадраты числа зная само число от 91 до 99. Совершив это маленькое открытие, они очень довольны собой и математика немного становится любимым предметом. А для кого-то эта красота мира чисел оказывает решающее значение и определяет выбор жизненного пути.
Для тех, кто не догадался о способах получения квадрата по числу от 91 до 99 приведу две формулы:
9Х>2= (100‒ (10‒Х) *2) *100+ (10-Х)> 2;
9Х>2= (80+Х*2) *100+ (10-Х)> 2
На самом деле формулы действительны для чисел от 90 до 99, но вычислять 90 таким способом слишком неоптимально. Поэтому число 90 исключено из этого промежутка. Вторая формула из представленных более предпочтительна.
Метод основания
Метод применяется как частный случай умножения двух чисел, которые близки к какому-либо числу. Это близкое число называется основанием. Сам метод возведения таким способом будем называть методом основания. В качестве основания выбираются числа заканчивающиеся на 0. Если число заканчивается на 0, то на такое число легко умножать, так как здесь умножать нужно на однозначное число и потом приписать к результату 0 (умножить на 10).
Число которое заканчивается на 0 часто называют основанием. А сам метод называется метод по основанию или короче метод основания.
Правило:
Чтобы умножить два числа нужно увеличить и убавить оба числа на одно и тоже число (так чтобы одно из них стало основанием) и прибавить квадрат числа на которое изменяли оба числа.
Примеры:
1) 42>2
42>2= (42+2) * (42—2) +2>2=44*40+4=1764
2) 83>2= (83+3) * (83—3) +3>2=86*80+9=6889
3) Данное правило можно использовать для умножения не только квадратов
76*77= (80—4) * (80—3) =80*80—4*80—3*80+ (-4) * (-3) =80* (80-3-4) +12=80*73+12=5840+12=5852
Доказательство:
(10X+Y) * (10X+Z) =10X*10X+10XY+10XZ+Y*Z=10X * (10X+Y+Z) +Y*Z
Таким образом получили что основание для данного умножения будет 10х. А другое число (10X+Y+Z) получается, если к первому числу (10X+Y) добавить единицы Z второго числа, или наоборот ко второму числу 10X+Z добавить единицы Y первого числа. К получившемуся произведению добавить произведение единиц Y*Zпервого и второго чисел.