Путеводитель для влюбленных в математику - стр. 6
Итак:
Теорема – это математическое утверждение, требующее доказательства своей неопровержимой истинности.
Интересные теоремы красивы. Надеюсь, этот «Путеводитель» поможет вам видеть математическую красоту и наслаждаться ею.
Какие три слова жаждут услышать математики?
Конечно, нам греет душу фраза: «Я люблю тебя», но в данном случае речь идет о других заветных словах: «Quod erat demonstrandum». В переводе с латинского они означают: «Что и требовалось доказать» – и обычно завершают математическое доказательство. Впрочем, немногие пишут эту фразу целиком, большинство ученых ограничиваются аббревиатурой QED. К сожалению, и она уже вышла из моды, и сейчас в конце доказательства принято использовать символ, например небольшой квадрат: □.
Часть I
Число
Глава 1
Простые числа
Физик Ричард Фейнман[13] верил: если человечество столкнется с опасностью потери всего научного знания, но у него будет возможность передать потомкам всего одну фразу о науке, эта фраза должна описывать, как атомы образуют материю[14]. Продолжим фантазировать в том же духе. Если бы мы могли передать следующему поколению всего одну математическую идею, это, как мне кажется, должен быть ответ на вопрос: как много существует простых чисел?
Математическая мысль начинается со счета. Мы используем для счета натуральные числа: 1, 2, 3 и т. д. Отсутствие объектов для счета – и необходимость подобрать число для этого отсутствия – приводит нас к понятию нуля. Когда мы складываем или умножаем натуральные числа, результат всегда представляет собой другое натуральное число. Но вычитание внушает беспокойство. Все хорошо, когда мы вычитаем три из пяти: 5 – 3, но если мы поступим наоборот, то получится 3 – 5, и результат не будет натуральным числом. Мы восполняем этот недостаток, вводя отрицательные числа: –1, –2, –3 и т. д.
Множество всех натуральных и полученных при их вычитании отрицательных чисел вместе с нулем называют целыми числами. Математики используют стилизованную букву Z, чтобы обозначить все целые числа:
ℤ = {…, –4, –3, –2, –1, 0, 1, 2, 3, 4, …}.
Когда мы делим целые числа друг на друга, возникает загвоздка. В то время как мы можем складывать, перемножать целые числа и вычитать их друг из друга в полной уверенности, что получим целое число, результат деления одного целого числа на другое иногда оказывается целым числом, а иногда и нет.
Возьмем два положительных целых числа а и b. Мы говорим, что а делится на b, если частное a / b – тоже целое число. Мы называем a – делимым, b – делителем