Размер шрифта
-
+

Искусственный интеллект на службе бизнеса. Как машинное прогнозирование помогает принимать решения - стр. 12

Беспилотный транспорт не будет работать вне полностью предсказуемой и контролируемой среды до тех пор, пока инженеры не переформулируют проблему навигации в прогностическую. Они уже поняли, что вместо того, чтобы просчитывать для машины действия во всех возможных обстоятельствах, необходимо поставить одну прогностическую задачу: что сделал бы человек? И сейчас компании вкладывают миллиарды долларов в обучение автопилота в неконтролируемой среде, в том числе на городских улицах и шоссе.

Представьте ИИ сидящим в автомобиле рядом с водителем. Человек проезжает миллионы километров, получает данные об окружающей среде с помощью собственных глаз и ушей, обрабатывает эту информацию в своем мозге и действует соответствующим образом: едет прямо или сворачивает, тормозит или разгоняется. Программисты наделили ИИ глазами и ушами – датчиками (камерами, радарами, лазерами). Таким образом ИИ собирает поступающие к нему со всех сторон данные, пока человек управляет автомобилем, и одновременно наблюдает за действиями водителя. Что он делает, получив тот или иной набор данных: поворачивает направо, тормозит или нажимает на газ? Чем дольше ИИ наблюдает за водителем, тем лучше предсказывает его действия, исходя из поступающих данных. ИИ учится водить машину, прогнозируя, как поступил бы человек в соответствующих обстоятельствах.

Когда такой фактор, как прогнозирование, дешевеет, это повышает ценность других вещей. И это критически важно. Экономисты называют их дополняющими факторами. Как снижение стоимости кофе повышает ценность сахара и сливок, так для беспилотных автомобилей снижение стоимости прогнозирования повышает ценность датчиков для сбора данных о том, что происходит вокруг машины. Так, в 2017 году Intel купила израильский стартап Mobileye, заплатив более $15 млрд. Прежде всего компанию интересовала его технология сбора данных, позволявшая машине эффективно распознавать объекты (дорожные знаки, людей и т. д.) и разметку на дорогах.

Благодаря удешевлению прогнозирования будет больше прогнозов и больше дополнений к ним. Эти две простые экономические силы запустят новые возможности, создаваемые алгоритмами. На элементарном уровне машина может снять с человека задачи прогнозирования и таким образом снизить издержки. По мере развития и увеличения мощности таких машин изменится само прогнозирование, а с ним улучшится и качество принимаемых решений. Но в какой-то момент прогностические машины станут столь точными и надежными, что изменят методы работы организации. Некоторые ИИ настолько сильно повлияют на ведение бизнеса, что их перестанут использовать только для повышения производительности в рамках стратегических планов. С их помощью изменится сама стратегия.

Страница 12