Размер шрифта
-
+

Искусственный интеллект на службе бизнеса. Как машинное прогнозирование помогает принимать решения - стр. 14

.

Мы не утверждаем, что Amazon будет или должна внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получила патент США на «опережающую доставку»[15]. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «сначала оплата, потом доставка» на «сначала доставка, потом оплата», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет получение инвестиций. И все это вследствие поворота регулятора точности прогностической машины.

Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.

Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap[16], поверните его на 11 часов.

План книги

Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.

В части I мы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и в каких случаях людям и машинам целесообразно объединить усилия для получения максимально точных прогнозов.

В части II мы опишем роль прогнозов в качестве вводных для принятия решений и объясним значение еще одной составляющей, пока недооцененной в сфере ИИ, – суждений. Прогнозы помогают принимать решения, снижая неопределенность, а благодаря суждениям выявляется ценность. В экономической терминологии суждением называется определение окупаемости, целесообразности, дохода и прибыли. Самое значительное свойство прогностических машин состоит в том, что они повышают ценность суждения.

В части III перейдем к практике. Прогностические машины оснащены инструментами ИИ в соответствии с конкретными задачами. Мы опишем шаги, помогающие определить, когда создание (или покупка) инструментов ИИ максимально повысит доход. Иногда такие инструменты идеально укладываются в рабочий процесс, но бывает, что побуждают изменить его. Также мы познакомим вас с важным подспорьем для уточнения ключевых требований к инструментам – «шаблоном ИИ».

Страница 14