Размер шрифта
-
+

Форма реальности - стр. 32

Что, если вы сошьете вместе нижние отверстия штанов? Не стану вдаваться в подробности, но получившаяся форма в системе Пуанкаре имеет одну нульмерную и две одномерные дыры, что дает эйлерову характеристику –1. Иными словами, в штанах после нашего вандализма столько же отверстий, сколько было и до него. Вы избавились от одного, сшив отверстия у лодыжек, но создали новое, которое теперь находится между штанинами. Убедительно? С удовольствием посмотрел бы на такое рассуждение в Snapchat![95]

Глава 3. Одно название разных вещей

Симметрия – это основа современного понимания геометрии. Более того, то, что мы решаем считать симметрией, определяет, с какой геометрией мы имеем дело.

В евклидовой геометрии симметрии – это движения фигур как твердого тела: любые комбинации сдвигов (переносов), переворачиваний (отражений) и вращений. Язык симметрии позволяет говорить о конгруэнтности (равенстве) более современным способом. Вместо того чтобы сказать: два треугольника конгруэнтны, когда соответствующие стороны и углы равны, мы говорим: треугольники конгруэнтны, если существует движение, которое переводит один в другой. Разве это не более естественно? Действительно, читая Евклида, чувствуешь, что он еле сдерживается (не всегда успешно), чтобы не выразиться именно таким образом.

Зачем в качестве фундаментальных симметрий брать движения? Одна из веских причин состоит в том (хотя доказать это не так-то легко), что именно движения – это то, что вы можете проделывать с плоскостью, сохраняя при этом расстояние между точками; собственно, и слово симметрия происходит от древнегреческого слова συμμετρία (соразмерность), которое образовано из слов συμ- (вместе, с, совместно) и μετρέω (измеряю). Термин, означающий «равная мера», был бы лучше; и действительно, в современной математике словом изометрия (от греческих слов ἴσος – равный, одинаковый, и μετρέω – измеряю) называют преобразования, которые сохраняют расстояние.

Эти два треугольника конгруэнтны,



а потому мы склонны, как и Евклид, считать, что они равны, несмотря на то что на самом деле это два разных треугольника, расположенных в нескольких сантиметрах друг от друга. Это подводит нас к другому изречению постоянно цитируемого Пуанкаре:

Математика – это искусство давать одно название разным вещам.

Подобные проблемы с определениями – часть нашего мышления и речи. Представьте, что кто-то спрашивает вас, не из Чикаго ли вы, а вы отвечаете: «Нет, я из Чикаго двадцатипятилетней давности». Это было бы абсурдной педантичностью, поскольку, говоря о городах, мы неявно подразумеваем симметрию при переносе во времени. В стиле Пуанкаре мы называем Чикаго прошлого и Чикаго настоящего одним и тем же словом.

Страница 32