Форма реальности - стр. 18
Вот еще один пример, требующий нахождения баланса между формальной логикой и интуицией. Предположим, у нас есть равнобедренный треугольник, то есть его стороны AB и AC равны. Теорема: углы B и C тоже равны.
Это утверждение иногда называют pons asinorum, то есть мост ослов, потому что это штука, через которую почти всех нас нужно осторожно провести. Здесь доказательство Евклида поважнее, чем вышеописанная ситуация с прямыми углами. Мы сразу оказываемся in medias res[62], хотя в школе подходили к мосту ослов только после нескольких недель подготовки. Поэтому примем как данность Предложение 4 книги I Евклида, где говорится, что если вы знаете две стороны треугольника и угол между ними, то можете найти длину третьей стороны и два оставшихся угла. Иными словами, если я нарисую так:
то существует только один способ восстановить оставшуюся часть треугольника. Другой способ сказать то же самое: если у двух треугольников равны две пары сторон и углы между ними, то у них равны все углы и все стороны, то есть, как говорят геометры, треугольники равны, или конгруэнтны.
Мы уже обращались к этому факту, когда угол между двумя сторонами был прямым, но я думаю, что и в случае произвольного угла это кажется столь же понятным.
(Кстати, справедливо и следующее: если три стороны двух треугольников равны, то и треугольники равны; например, если длины сторон 3, 4 и 5 равны, то треугольник должен быть прямоугольным, как я нарисовал выше. Однако это менее очевидно, что Евклид и доказал несколько позднее: Предложение I.8. Если вам кажется, что это очевидно, подумайте о четырехугольнике: вспомните ромб, с которым мы недавно встречались, – у него такие же стороны, как у квадрата, но он же не квадрат.)
А теперь перейдем к pons asinorum. Доказательство в два столбца может выглядеть так:
Да, мы посреди доказательства, но у нас новая точка и новый отрезок AD, так что лучше обновить чертеж! Кстати, вспомните, что, по нашему предположению, треугольник равнобедренный, поэтому длина AB и AC одинакова; сейчас мы это используем.
QED[64].
Это доказательство посерьезнее, чем то, что мы видели, поскольку тут вам действительно приходится что-то делать: вы проводите новую линию L и придумываете название D для точки, где L пересекает BC. Это позволяет вам воспринять точки B и C как углы двух новых треугольников ABD и ABC, которые, как мы продемонстрируем далее, равны.
Однако существует и более хитрый способ, изложенный примерно через шестьсот лет после Евклида Паппом Александрийским, еще одним геометром из Северной Африки, в трактате Συναγωγή («Математическое собрание»). (Слово «синагога» означает «собрание», и в античном мире оно могло обозначать собрание математических предложений, а вовсе не собрание евреев на молитву.)