Размер шрифта
-
+

Форма реальности - стр. 10

ЗАСТЫВШАЯ ФОРМАЛИСТИКА

Представление Линкольна о геометрии для американских масс, как и многие другие его хорошие идеи, было реализовано лишь частично. К середине XIX века геометрия переместилась из колледжей в старшие классы школ, однако в типичном курсе Евклид стал чем-то вроде музейного экспоната: его доказательства следовало запомнить, воспроизвести и в какой-то степени оценить. О том, как кто-то их придумал, не было и речи. Сам создатель доказательств практически исчез: один писатель того времени заметил, что «многие молодые люди[36] читают шесть книг “Начал”, прежде чем случайно узнают, что Евклид – это не название предмета, а имя человека, который о нем написал». Таков парадокс образования: то, чем мы больше всего восхищаемся, мы укладываем в коробочку и засовываем ее в ящик.

Честно говоря, об историческом Евклиде сказать почти нечего, поскольку нам о нем практически ничего и не известно. Он жил и работал в большом городе Александрия в Северной Африке примерно за 300 лет до нашей эры. И это все, что мы знаем. Его «Начала» – это собрание знаний по геометрии греческих математиков того времени; на десерт в конце книги добавлены основы теории чисел. Значительная часть материала была известна математикам еще до Евклида, но радикально новым и революционным шагом стала организация этого массива знаний. Из небольшого количества аксиом, в которых почти невозможно сомневаться[37], шаг за шагом выводится весь аппарат теорем о треугольниках, прямых, углах и окружностях. До Евклида – если это и правда был Евклид, а не целый коллектив геометров из Александрии, творивший под этим псевдонимом, – такую структуру было невозможно представить. Зато впоследствии она стала моделью для всего замечательного в знании и мышлении.

Конечно, существует и другой способ преподавать геометрию, который делает упор на изобретательность и пытается поместить учащегося в кресло Евклидова пилота, чтобы тот мог самостоятельно создавать определения и смотреть, что из них получится. Один из таких учебников, «Изобретательная геометрия», исходит из предпосылки, что «единственное настоящее образование – это самообразование». Не смотрите на конструкции других людей, советует книга, «по крайней мере пока не откроете собственную конструкцию», – и вы не будете беспокоиться и сравнивать себя с другими учениками: все занимаются в собственном темпе, и вы с большей вероятностью усвоите материал, если вам нравится им заниматься. Сама книга – всего лишь последовательность из 446 головоломок и задач. Одни достаточно просты: «Можете ли вы нарисовать три угла двумя прямыми линиями? А четыре угла двумя прямыми линиями?» У других, как предупреждают авторы, на самом деле не может быть решения, и вы оказываетесь в положении

Страница 10