Размер шрифта
-
+

Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа - стр. 10

1.2.2.2. Коэффициент корреляции меньше единицы и больше минус единицы

Вернемся к нашему примеру с активами A и B из начала раздела 1.2.2. Если коэффициент корреляции временных рядов доходностей двух активов будет в диапазоне от -1 до +1 (-1>AB<+1), то формула доходности портфеля будет точно такая же, как и раньше:



А в формуле для риска портфеля двух активов (см. последнюю формулу раздела 1.2.2), в общем случае, квадратный корень в аналитическом виде не извлекается. Но хорошо видно, что подкоренное выражение будет уменьшаться вместе с уменьшением коэффициента корреляции Corr>AB. Значит, риск портфеля из двух активов будет уменьшаться вместе с уменьшением коэффициента корреляции.

Вот это и есть главный вывод теории Марковица. Чем коэффициент корреляции доходности активов меньше, тем меньше риск портфеля. Мы здесь этот вывод увидели на примере портфеля из двух активов.

На графике «Риск-Доходность» (см. рис. 5) портфели из двух активов будут уже располагаться не на отрезке, который соединяет два актива, а на кривых линиях, которые соединяют эти активы. Эти кривые имеют выпуклость в сторону меньшего риска.

На рис. 5 показано, как меняются линии местоположения портфелей для разных долей активов A и B, и разных коэффициентов корреляции. Разные цвета кривых на рис. 5 соответствуют разным коэффициентам корреляции Corr>AB. А конкретные точки на кривой фиксированного цвета соответствуют разным соотношениям весов активов W>A и W>B.

Цветными точками на рис. 5 показаны портфели с минимальными рисками для данного коэффициента корреляции.

Черными точками на рис. 5 показаны положения портфелей с равными весами активов W>A = W>B = 0.5. Доходности таких портфелей одинаковые. Но риски этих портфелей тем меньше, чем меньше коэффициент корреляции между доходностями активов.

Обратите внимание, что равные веса активов еще не гарантируют, что получится портфель с минимальным риском. Хорошо видно, что цветные точки находятся левее черных точек на соответствующих цветных кривых.

1.2.2.3. Антикорреляция Corr=-1

При самой маленькой корреляции между доходностями активов (Corr>AB=-1) кривые линии портфелей переходят в 2 отрезка, лежащих на прямых линиях, как показано голубым цветом на рис. 5. Эти отрезки касаются вертикальной оси координат в одной точке.

Но все точки на вертикальной оси координат соответствуют портфелям с нулевым риском. Значит, если доходности двух активов в точности антикоррелируют друг с другом, то можно так подобрать весовые коэффициенты этих двух активов, что результирующий портфель не будет иметь никакого риска (то есть станет безрисковым активом). Найдем эти весовые коэффициенты.

Страница 10