Размер шрифта
-
+

Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа - стр. 9

и средний риск S:



Теперь посмотрим на еще одном синтетическом примере, как это всё выглядит на временных графиках. На рис. 6. показано поведение цен двух активов с сильной корреляцией их доходностей за 43 торговых дня.


Рис. 6. Изменение цен двух активов с сильной корреляцией их доходностей за 43 торговых дня.


Эти цены меняются очень похоже друг на друга. Они одновременно растут и одновременно падают. Доходности этих активов в этом примере коррелируют друг с другом коэффициентом корреляции очень близким к единице: Corr = +0.95.

Средняя доходность первого актива на интервале 43 торговых дня >1=0.045, а риск S>1=0.202. Средняя доходность второго актива >2=0.017, а риск S>2=0.072.

На рис. 7 показан график доходностей этих активов. Хорошо видно, что эти доходности одновременно друг с другом становятся отрицательными и одновременно становятся положительными. Отрицательные доходности означают убытки.


Рис. 7. Изменение доходностей двух сильно коррелирующих активов за 43 торговых дня, их средние доходности и диапазоны риска.


На этом же рисунке горизонтальными штрихпунктирными линиями показаны средние за интервал доходности этих активов. Хотя средние доходности находятся выше нуля, то есть активы за все 43 дня оказались не убыточные, но в конкретные торговые дни обе доходности могут быть одновременно отрицательными.

Наконец, на рис. 7 тонкими пунктирными линиями показаны диапазоны риска активов. Диапазон риска, это отклонение доходности вверх и вниз от средней доходности на величину стандартного отклонения, то есть на величину риска. Хорошо видно, что нижние границы этих диапазонов очень сильно залезают в отрицательную область доходностей.

На рис. 8 показаны эти же самые доходности двух активов и доходность портфеля, который состоит из этих активов с весовыми коэффициентами W>1 = W>2 = 0.5.


Рис. 8. Доходности двух сильно коррелирующих активов и их портфеля с долями 1/2.


Какое бы соотношение долей активов мы бы не взяли, кривая доходностей портфеля всегда будет находится между кривыми доходностей этих двух активов. Кривая доходностей портфеля, как бы заперта, между кривыми доходности сильно коррелирующих активов. Она будет расположена ближе к кривой первого или второго актива в зависимости от соотношения долей этих активов в портфеле: W>1 и W>2.

Средняя доходность портфеля >12 всегда будет находиться между средними доходностями этих двух активов (>2>12>1) и риск портфеля S>12 тоже будет находиться между рисками этих двух активов (S>2 ≤ S>12 ≤ S>1). А значит, нижняя граница диапазона риска портфеля в нашем примере всегда будет находиться в отрицательной области.

Страница 9