Размер шрифта
-
+

Большой космический обман США. Часть 20. Аэродинамический нагрев и «космические» капсулы НАСА - стр. 17

Попов Е. А. про аэродинамический нагрев космического аппарата, который входит в атмосферу со скоростью более 6 км/сек: «Тепловая энергия при торможении космического аппарата поступает в атмосферу с его поверхности двумя основными путями – за счет конвективной теплопередачи в пограничном слое и за счет излучения фронта ударной волны. При больших скоростях полета процесс конвективного переноса тепла усложняется ионизацией газа, неравновесностью пограничного слоя, а при уносе массы с поверхности обшивки (обгорание обмазки, испарение теплозащиты и т. п.) – массообменом и химическими реакциями в пограничном слое. Излучение ударной волны – лучистая теплопередача – становится существенным при скоростях полета 6—8 км/с, а при больших скоростях приобретает решающее значение». [2] Согласно второму закону термодинамики тепловая энергия, в виде излучения, передается от более нагретого тела, с высокой температурой, к менее нагретому телу, с меньшей температурой. Часто защитники НАСА этого момента не понимают и полагают, что излучение нагретого теплового экрана космической капсулы в плазму решает проблему передачи излишков тепла от ТЭ.

Второй закон термодинамики для американских пропагандистов не писан! Американский пропагандист Попов Е. А. не отрицал, что космическим аппаратам, входящим в атмосферу требуется теплозащита: «Тепловая энергия, подведенная извне к обшивке спускаемого аппарата, частично рассеивается за счет излучений поверхности, частично поглощается или уносится (при охлаждении с уносом массы) системами теплозащиты, частично аккумулируется за счет теплоемкости конструкции спускаемого аппарата, вызывая повышение температуры силовых элементов. Полное исследование тепловых режимов в различных точках обшивки спускаемого аппарата реальной конфигурации, требующее достаточно подробного рассмотрения тепло- и массообмена вблизи охлаждаемой поверхности и изучения температурных полей в конструкции, представляет собой весьма сложную задачу. Обычно используются приближенные соотношения, позволяющие оценить интенсивность нагрева для некоторых типичных участков поверхности спускаемого аппарата. Затем эти оценки уточняются на основе экспериментальных исследований. Таким образом, создание спускаемых аппаратов для конкретных планет, имеющих атмосферу, задача трудоемкая и очень сложная, даже только в части теплозащиты, но она успешно решается в конструкторских бюро». [2]

Но Попов Е. А. не был бы американским пропагандистом, если бы он не прилагал усилия для оправдания американского обмана. Этот автор, стоящий на страже американских интересов, видимо, часто смотрел в потолок и там видел конкретные величины и параметры: «Посмотрим на существующие и уже применявшиеся спускаемые аппараты с точки зрения распределения тепловых потоков. Кинетическая энергия спускаемого аппарата хотя и очень большая, но легко подсчитывается. Высвобождающаяся при торможении спускаемого аппарата в атмосфере энергия только в небольшой части (1—2%) идет на его нагрев, большая же часть этой энергии нагревает окружающую воздушную среду и рассеивается в атмосфере. Практически вот на эти 1—2% от располагаемой спускаемым аппаратом энергии и надо рассчитывать создаваемую теплозащиту». [2] тор не объясняет своим читателям, почему 1—2% энергии идут на нагревание самой капсулы. Какую воздушную среду, интересно, обнаружил автор на высоте порядка 60 километров и более, где начинает проявляться аэродинамический нагрев теплового экрана? Об этом этот гений термодинамики скромно умалчивает. Читатель безоговорочно должен ему верить про проценты (1—2%), которые нагревают окружающую, очень разряженную воздушную среду! Но почему 2% а не 5 или 10 процентов? Об этом пропагандист НАСА Евгений Попов скромно умалчивает.

Страница 17