Завет «темных веков». Термины и концепты Освальда Шпенглера - стр. 21
Всякому математическому рационализму утирает нос теорема Геделя, объявившая о неполноте любой теории, включающей в себя арифметику натуральных чисел. В ней всегда найдутся утверждения, которые нельзя ни подтвердить, ни опровергнуть.
Число гипнотизирует кого угодно, только не современного математика, который знает качественный анализ и оперирует с объектами, далекими от чисел. В них царят совершенно не переводимые на язык чисел «геометрии», а топология не знает «расстояний». Но именно отсюда понятийный аппарат перетекает в естественные и даже общественные науки – в особенности это касается теории катастроф.
Фрактальность знания отражает его более глубокое понимание. Все напоминает все, но отличается собственным гештальтом сообразно масштабам и координатам. Мы как будто идем по фрактальной поверхности, которая в каждом своем фрагменте содержит уменьшенную копию более крупного фрагмента, а тот маленький фрагмент – тоже копия, и так далее. Но пристальнее рассматривая уменьшенный фрагмент, мы видим, что он – нечто совсем иное – иной мир, и повторяет больший масштаб лишь «вчерне».
Древние математики считали, что их наука проникает в сущность вещей. Но эта сущность была абстрактной, к ней испытывали интерес те, кто имел возможность быть философом. Отвлеченность философии и отвлеченность геометрии от обычной жизни предопределяли статус философа наравне со жрецом. Его жизнь и интересы – не от мира сего. Не мера жизни «теперь и здесь», а иная жизнь – «не здесь и не теперь». Лишь немногим более столетия наших времен мы живем в мире, на который обрушилась математика – прежде всего, своим магическим числом, заклятым компьютерными технологиями.
Апейрон Анаксимандра – неустойчивое состояние вещества, к которому по этой причине неприложимо число. Размытость форм облака или неизмеримость прибрежной полосы – вполне внятные образы для современной науки, которая в этом случае находит для числа другое – неарифметическое, неевклидово применение.
Получив достаточно глубокие для своего времени знания в области математики, Шпенглер в дальнейшем стал энциклопедистом-историком и культурологом, и построенные им философские концепции лишь в незначительной мере учитывали существование математики. Преподавание математики в гимназии, которым философ немало лет зарабатывал себе на жизнь, не способствовало углублению в математические доктрины. По этой причине Шпенглер предпочел считать математические формализмы образцом статики – ставшим, а не становящимся. Между тем, математика, видимо, единственная наука, которая способна символизировать становление – обозначать «то, чего не может быть». В том числе – немыслимые для обыденного сознания геометрии, размерности, несуществующие множества, мнимые величины, неустойчивые решения и так далее.