Размер шрифта
-
+

Завет «темных веков». Термины и концепты Освальда Шпенглера - стр. 11

Шпенглер полагал, что числа разграничивают природные впечатления точно так же, как имена богов разграничивают (можно сказать, «сюжетно размечают») миф. Именование богов и именование чисел – это способность человека, которую приходится признать равнобожественной. Человек называет богов! И лишь неназванные, не имеющие имен боги угрожают человеку вторжением из иных миров, чьи законы еще не прочувствованы в мире человека. Называние – это заклинание, а заклинание – это в некоторой степени подчинение. Если не Бога, то мира Божиего – наравне с самим Богом. «Именами и числами человеческое понимание приобретает власть над миром».

Природа и история у Шпенглера радикально разделены тем, что природа может подвергаться счислению и подлежит счислению, коль она так устроена. А вот история неисчислима, а потому не имеет отношения к математике. Прогноз всегда будет опровергнут, потому что будущее нам не принадлежит – мы не знаем, что оно из себя представляет. Попытка заглянуть в будущее всегда терпит неудачу, но без таких попыток переживание человеком истории невозможно. Человек скорее пытается почувствовать будущее, чем исчислить его параметры – хотя бы какие-нибудь.

Будучи знаком с современной ему математикой, Шпенглер, как ни странно, считал ее культурно зависимой – «стиль какой-либо возникающей математики зависит от того, в какой культуре она коренится, какие люди о ней размышляют». Исходя из наших представлений о математике, следует заявить, что математика – это особая культура мышления, которая в некоторой части становится доступной тем, кто избрал популярную профессию программиста. Но все же настоящая математика – это таинство иной культуры, которая выбивается из любых культурных норм.

Натуральный ряд чисел – основа математики. Да и в целом миропонимания, поскольку за каждым натуральным числом скрывается определенная «философия», акт мышления. Бесконечность познания выражена в бесконечности натурального ряда, а локальная конечность – в ограниченном наборе операторов. Как и в природе: законов мало, объектов, к которым они прилагаются – много. Проблема состоит в том, где разумно оборвать натуральный ряд, чтобы не выдумывать несуществующие объекты мышления? Скорее всего, его оборвать нельзя – если смыслы в начале ряда цепляются за каждое число, то дальше плотность смыслов падает, потому что множество цифр можно заменить так же, как и иррациональные – два числа и оператор между ними[3].

У единицы нет физического образа. Она несет в себе все исчисление, не тревожа его в умножении и устраняя при делении любого числа или функции на себя, оставаясь незримой константой, к которой стремятся все сходящиеся ряды. Галилей писал в «Беседах»: «Если какое-либо число должно являться бесконечностью, то этим числом должна быть единица: в самом деле, в ней мы находим условия и необходимые признаки, которые должно удовлетворять бесконечно большое число, поскольку оно содержит в себе столько же квадратов, сколько кубов и чисел вообще… Единица является и квадратом, и кубом, и квадратом квадрата и т. д… Отсюда заключаем, что нет другого бесконечного числа, кроме единицы. Это представляется столь удивительным, что превосходит способность нашего представления». Безмерное понимается (точнее, метафизические предощущается) в единичном, счет – до начала всякого счета. Единица представляет мысль о целостности уникальности и божественности. Она же и основа счета – «один, один, один…» Неразличимые объекты именно так и считаются. Но стоит идентичное различить хоть в чем-то (местоположении, времени…), и счет стронется с мертвой точки: «Один, два, три…».

Страница 11