Размер шрифта
-
+

Законы эпидемий. Как развиваются и почему прекращаются эпидемии болезней, финансовые кризисы, вспышки насилия и модные тренды - стр. 19

.

Во время пребывания в больнице Кермак просил друзей и сиделок читать ему книги по математике. Понимая, что зрение к нему не вернется, он тренировался получать информацию другим путем. У него была превосходная память, и математические задачи он решал в уме. «Просто невероятно, как много он мог сделать, не имея возможности записать что-либо на бумаге», – восхищался его коллега Уильям Маккри.

Выписавшись из больницы, Кермак продолжил заниматься наукой, но переключился на другие области. Он оставил химические опыты и начал разрабатывать новые проекты. В частности, он работал над математическим обеспечением исследований вместе с Андерсоном Маккендриком, который возглавил лабораторию в Эдинбурге. Проработав в Индийской медицинской службе два десятка лет, в 1920 году Маккендрик уволился и вместе с семьей переехал в Шотландию.

Кермак и Маккендрик развивали идеи Росса, пытаясь применить их к эпидемиям в целом. Они сосредоточились на одном из главных вопросов в изучении болезней: что приводит к окончанию эпидемии? В то время существовало два популярных объяснения. Либо передача инфекции прекращалась потому, что не оставалось восприимчивых к ней людей, либо по мере распространения эпидемии патоген становился менее заразным. Как выяснилось, в большинстве случаев оба объяснения неверны[42].

Как и Росс, Кермак и Маккендрик начали с разработки математической модели передачи болезни. Для простоты они предположили, что население перемешивается случайным образом. Подобно тому как это происходит при встряхивании камешков в сосуде, каждый человек в популяции обладает равными шансами встретиться с любым другим. В их модели эпидемия начиналась с определенного количества больных людей, а все остальные были восприимчивы к инфекции. После выздоровления человек приобретал иммунитет. Таким образом, всех людей в популяции можно разделить на три группы на основе их состояния:



Эту модель часто называют «моделью SIR» – по первым буквам названий групп (англ. susceptible, infectious, recovered). Предположим, в популяции численностью 10 тысяч человек один человек заболевает гриппом. Если мы смоделируем эпидемию гриппа с помощью модели SIR, то получим следующую кривую:


Модель SIR для эпидемии гриппа


Смоделированная здесь эпидемия развивается медленно, поскольку начинается с одного зараженного человека, но через 50 дней все равно достигает пика. Через 80 дней она практически заканчивается. Обратите внимание, что в конце эпидемии по-прежнему остается какое-то количество восприимчивых людей. Если бы заразились все 10 тысяч человек, то все они в конце концов попали бы в группу «Выздоровевшие». Модель Кермака и Маккендрика указывает на то, что этого не случится: вспышка заболевания может закончиться прежде, чем переболеют все до единого. «В общем случае эпидемия заканчивается раньше, чем заканчивается восприимчивое население», – писали они.

Страница 19