Размер шрифта
-
+

Восемь этюдов о бесконечности. Математическое приключение - стр. 5

Венгерский математик Пал Эрдёш (1913–1996) любил предлагать денежные призы за успешное решение интересовавших его открытых математических проблем. Призы эти начинались с 25 долларов, а доказательство гипотезы Коллатца стоило в его прейскуранте целых 500 долларов – то есть попадало в категорию весьма дорогих задач, хотя сам Эрдёш говорил, что мир математики, возможно, не готов к таким сложным и запутанным задачам, как гипотеза 3n + 1. Эрдёша уже нет с нами, но можно не беспокоиться: выплату призов взял на себя его коллега Рон Грэм. Если вам удастся решить эту задачу, вы можете получить приз одним из двух способов: либо в виде чека, который сам Эрдёш выписал перед смертью (его можно только вставить в рамку: срок действия этого чека давно истек), либо реальными деньгами (выбор между грехом гордыни и грехом сребролюбия).

К слову, а также потому, что я хотел бы поделиться этим интересным фактом, самое большое число, когда-либо использованное в математическом доказательстве, названо в честь этого же самого Рона Грэма. Число это настолько велико, что его невозможно записать в стандартной математической нотации.

Мудрость – это знать, что не знаешь того, чего не знаешь, и знаешь то, что знаешь. Глупость – это думать, что знаешь то, чего не знаешь, или не знаешь того, что знаешь.

Китайская пословица
ЧИСЛО ЭРДЁША

Пал Эрдёш был математиком исключительно плодовитым. Его превосходную биографию можно найти в книге Пола Хофмана «Человек, который любил только числа» (The Man Who Loved Only Numbers, 1998). Он написал более 1400 научных статей. Эрдёш был страстным поборником командной работы и сотрудничества, и за годы его научной деятельности вместе с ним над его статьями работали целых 511 математиков. Любому математику, который когда-либо писал статью в соавторстве с самим Эрдёшем, присваивается престижное число Эрдёша, равное 1. Те, кто сотрудничал с его соавторами, но не с самим Эрдёшем, получают число Эрдёша, равное 2. Аналогичным образом по мере все большего удаления присваиваются числа Эрдёша, равные 3, 4 и так далее. Общее правило таково: если вы сотрудничаете с человеком, наименьшее число Эрдёша которого равно k, то ваше число Эрдёша равно k + 1. Сам Эрдёш был единственным человеком с числом Эрдёша, равным 0. На противоположном конце спектра находятся те, кто никогда не писал статей с Эрдёшем и никогда не писал статей ни с кем из имеющих конечное число Эрдёша: их число Эрдёша равно бесконечности (∞). «Бесконечное число Эрдёша» звучит весьма престижно – может быть, даже престижнее, чем, скажем, «число Эрдёша 7», – но многие из вас, наверное, удивятся, узнав, что ваше собственное число Эрдёша (как и у большей части человечества) как раз и равно бесконечности. Я сам не пишу статей, но однажды принимал участие в совместной работе над статьей с математиком, число Эрдёша которого равнялось 3, так что я, даже не стремясь к тому, стал гордым обладателем числа Эрдёша, равного 4.

Страница 5