Восемь этюдов о бесконечности. Математическое приключение - стр. 7
История учит нас, что люди и народы ведут себя мудро после того, как они исчерпают все остальные возможности.
Абба Эвен
Докажите, что, если из шахматной доски удалить любые две клетки разных цветов, все оставшиеся клетки всегда можно покрыть 31 костяшкой домино.
Бесконечные крестики-нолики
Когда я учился в начальной школе в Литве, в своем родном Вильнюсе, одним из самых значительных моих достижений было обретение виртуозного умения играть на уроках в стратегические игры с карандашом и бумагой и не попадаться учителям. Моей любимой игрой был бесконечный вариант крестиков-ноликов. Эта игра не раз спасала меня от скуки на занятиях, на которых меня заставляли сидеть.
Позвольте объяснить вам правила игры.
Вы, несомненно, знакомы с обычными крестиками-ноликами, в которые играют на поле размером 3 × 3 клетки. Эта игра подходит для детей лет до шести. После этого возраста каждая партия должна неизменно заканчиваться вничью, если только один из игроков не заснет в процессе игры (что, бесспорно, возможно, учитывая, насколько эта игра скучна).
В бесконечном варианте играют на бесконечном поле, и каждый игрок стремится выстроить ряд из пяти крестиков или ноликов. Как и в исходном варианте, ряд может быть горизонтальным, вертикальным или диагональным. Игроки по очереди ставят на поле крестики и нолики, и первый, выстроивший ряд из пяти своих символов, считается победителем.
a)
б)
a) У ноликов нет хода, который позволил бы заблокировать две «открытые» тройки крестиков; нолики проигрывают
б) Пример еще одной партии, которую только что выиграли крестики
В начальной школе, когда я «открыл» эту игру, я думал, что сам ее и изобрел, но впоследствии узнал, что это не так: существует игра под названием «гомоку», очень похожая на бесконечные крестики-нолики. Она особенно популярна в Японии и Вьетнаме. Слово го означает по-японски «пять».
Вы наверняка слышали об игре го. Однако, хотя в гомоку часто играют на такой же доске, какую используют для этой прославленной великой игры, между ними нет никакой связи. Го – древняя китайская игра, которая даже упоминается в «Аналектах»[2] Конфуция. Поскольку она попала на Запад через Японию, мы используем ее японское название, но, как я уже сказал, го – это не гомоку[3]{2}.
Несмотря на тот опыт, который я накопил, играя на уроках – а иногда и на переменах (хотя на переменах играть не так интересно – потому что это не запрещено!), я не мог понять, всегда ли игрок, начинающий первым (то есть играющий крестиками), выигрывает, если он применяет правильную стратегию, независимо от того, как играет его противник, или же партия всегда заканчивается вничью (точнее, не может закончиться никогда), если оба ее участника играют правильно. Интуиция подсказывала мне, что должна существовать какая-то стратегия, обеспечивающая победу игроку, делающему первый ход в партии.