Размер шрифта
-
+

Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире - стр. 10

Не будем касаться вопросов о правдоподобии приведенных моделей, ибо здесь возникают интересные вопросы с чисто математическим привкусом. Например, в связной сети, где все друг друга знают, какое самое устойчивое состояние? Прежде всего это нирвана доброжелательности, где все отношения позитивные, а все треугольники в пределах сети сбалансированы. Однако существуют и другие устойчивые состояния. Например, устойчивое к конфликтам состояние, когда сеть раскололась на два враждебных лагеря (произвольных по величине и составу). Все члены одного лагеря хорошо относятся друг к другу, но враждебны к представителям другого лагеря. (Ничего не напоминает?) Возможно, еще более удивительно то, что эти полярные состояния являются единственно возможными столь же устойчивыми состояниями, как нирвана{7}. В частности, ни у какого трехстороннего раскола не может быть уравновешенных треугольников.

Ученые использовали этот метод для анализа союзов, сложившихся при подготовке к Первой мировой войне{8}. Диаграммы, представленные ниже, показывают союзы между основными державами, участвовавшими в ней: Великобританией, Францией, Россией, Италией, Германией и Австро-Венгрией между 1872 и 1907 гг.





Первые пять конфигураций были несбалансированными, потому что каждая из них содержала по крайней мере один несбалансированный треугольник. Возникающие в результате разногласия подталкивали эти страны к изменению конфигурации, тем самым вызывая реверберацию в других частях сети. На последнем этапе Европа раскололась на два непримиримых антагонистских блока, придя к общему балансу, но оказавшись на грани войны.

Однако это не значит, что на основании данной теории можно делать прогнозы. Это не так. Подобный подход не позволяет объяснить все тонкости изменений в геополитике. Но некоторые из наблюдаемых нами явлений происходят в соответствии именно с примитивной логикой «враг моего врага» и отлично подпадают под умножение отрицательных чисел. Отделяя важное от незначительного, арифметика отрицательных чисел может помочь нам отыскать настоящие загадки.

4. Коммутативность: перемена мест сомножителей

Приблизительно каждые десять лет появляются новые методы преподавания математики, что лишний раз заставляет родителей почувствовать себя отставшими от жизни. Еще в 60-е годы прошлого века мои родители были в шоке оттого, что не могли мне помочь выполнить простое домашнее задание – они никогда не слышали о троичной системе счисления и диаграммах Эйлера-Венна.

Сегодня ситуация не изменилась. «Папа, ты можешь показать мне, как делать эти примеры на умножение?» «Конечно могу», – самонадеянно заявил я, пока не довел дочь до истерики. «Нет, папа, сейчас это делают не так! Это устаревший способ! Разве ты не знаешь умножения методом решетки? Нет? Ну а как насчет частичных произведений?»

Страница 10