Размер шрифта
-
+

Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире - стр. 13

Об этом ведутся горячие споры на различных финансовых сайтах в интернете. Но даже после того как была показана актуальность коммутативных законов, некоторые блогеры с этим не согласились. Что, по большому счету, противоречит здравому смыслу.

Возможно, мы запрограммированы не доверять коммутативному закону, потому что в повседневной жизни, как правило, имеет значение то, что мы делаем в первую очередь. Нельзя одновременно брать кусок пирога и есть его. И снимать ботинки и носки тоже нужно в правильной последовательности.

Физик Мюррей Гелл-Манн как-то в ходе тревожных размышлений о своем будущем тоже пришел к аналогичному выводу. Закончив Йельский университет, он отчаянно хотел остаться в Лиге плюща[4]. К сожалению, в Принстон его не приняли. В Гарвард взяли, но без финансовой помощи он протянул бы ноги. Лучшим из возможных вариантов оказался Массачусетский технологический институт (но он не входил в Лигу плюща). В глазах амбициозного Гелл-Манна это учебное заведение было не очень престижным. Тем не менее он принял предложение. Много лет спустя он признался, что в тот момент подумывал о самоубийстве, но решил этого не делать, как только понял, что посещение Массачусетского технологического института и самоубийство нельзя переставить (поменять местами){12}. Он мог бы пойти учиться в Массачусетский технологический институт, а потом убить себя, но не наоборот.

Гелл-Манна, вероятно, впечатлила важность принципа коммутативности. Но в квантовой физике он бы обнаружил, что на самом глубинном уровне природа не подчиняется коммутативному закону. И это тоже хорошо, поскольку благодаря нарушению коммутативного закона мир таков, каков он есть. Именно поэтому материя является твердой и атомы не разрушаются.

Еще на заре появления квантовой механики{13} Вернер Гейзенберг и Поль Дирак обнаружили, что в природе p × qq × p, где p и q – импульс и координата квантовой частицы. Без этого нарушения коммутативного закона не было бы принципа неопределенности Гейзенберга, атомы бы взорвались и ничего не существовало бы.

Вот почему вам лучше позаботиться о своих p и q. И наказать делать это своим детям.

5. Деление и его проблемы

Через все повествование о числовых основах математики красной нитью проходит одна идея. Речь идет о создании (или поиске) все более универсальных чисел.

Нам достаточно натуральных чисел 1, 2, 3 и т. д., если нужно что-то сосчитать, сложить или перемножить. Но как только мы переходим к вычитанию, мы вынуждены создать новый вид числа – ноль, а также отрицательные числа. Эта расширенная вселенная чисел, называемых целыми, так же замкнута, как и натуральные числа, но она более мощная, поскольку охватывает еще и результаты операции вычитания

Страница 13