Размер шрифта
-
+

Стратегические игры. Доступный учебник по теории игр - стр. 69

Абстрактная теория шахмат гласит, что это конечная игра, которая может быть решена методом обратных рассуждений. Шахматы зачастую требуют искусства ведения игры, опирающегося на опыт, интуицию и тонкие суждения. Плохо ли это с точки зрения использования метода обратных рассуждений в процессе анализа игр с последовательными ходами? Мы считаем, что нет. Теория действительно не позволяет найти полное решение игры в шахматы, но дает возможность достаточно далеко продвинуться в этом направлении. Упреждающий анализ нескольких ходов – важный аспект подхода, подразумевающий сочетание просчета ходов методом грубой силы и основанной на знаниях оценки промежуточных позиций. По мере увеличения вычислительной мощности компьютеров будет возрастать и роль просчитывания ходов методом грубой силы, а значит, и область применения теории обратных рассуждений.

Данные исследований игры в шашки, о чем мы расскажем ниже, говорят о том, что решение игры в шахматы все же может быть найдено.

В. Шашки

Невероятное количество компьютерных и человеко-часов ушло на поиск решения игры в шахматы. С не меньшим упорством исследователи работали и над решением несколько более простой игры – в шашки, и в 2007 году объявили, что оно найдено[28].

Шашки – еще одна игра с двумя участниками, в которую играют на доске восемь на восемь клеток. Каждый игрок имеет по 12 круглых фигур, или шашек, разного цвета (рис. 3.9), и игроки по очереди передвигают их по диагонали, перепрыгивая (и захватывая) шашки противника, когда это возможно. Как и в шахматах, игра заканчивается и игрок А выигрывает, если у игрока Б не остается шашек или ему некуда ходить. Кроме того, партия может завершиться вничью, если оба игрока согласятся, что ни один из них не может победить.


Рис. 3.9. Шашки


Хотя сложность шашек меркнет на фоне шахмат (количество вероятных позиций в шашках приблизительно равно квадратному корню из количества позиций в шахматах), существует 5 × 10>20 возможных позиций, так что о построении дерева игры не может быть и речи. Если исходить из здравого смысла и результатов чемпионатов мира по шашкам за многие годы, то хорошая игра должна приводить к ничьей, но это не было доказано. Однако спустя какое-то время программисту из Канады все же удалось получить такое доказательство – компьютерную программу Chinook, которая способна обеспечить гарантированную ничью.

Chinook появилась в 1989 году, а в 1992-м впервые сразилась с чемпионом мира по шашкам Марионом Тинсли (проиграв со счетом 4:2 при 33 ничьих), а затем еще раз в 1994 году (когда во время серии ничьих у Тинсли пошатнулось здоровье). В период с 1997 по 2001 год работа над программой была приостановлена, поскольку ее создатели ждали усовершенствования компьютерных технологий. И наконец весной 2007 года Chinook продемонстрировала беспроигрышный алгоритм игры в шашки, использующий комбинацию анализа методом обратных рассуждений с конца игры и прямого анализа игры с исходной позиции наряду с эквивалентом функции промежуточной оценки для отслеживания лучших ходов в базе данных, включающей все возможные позиции на доске.

Страница 69