Стратегические игры. Доступный учебник по теории игр - стр. 58
Три игрока, Эмили, Нина и Талия, живут на одной маленькой улице. Каждую девушку попросили внести свой вклад в создание декоративного сада на месте пересечения улицы с автомагистралью. Окончательная площадь и пышность сада зависят от того, сколько участницы игры готовы в него вложить. Кроме того, хотя все три участницы были бы счастливы иметь такой сад (а его размер еще больше усилил бы это ощущение), ни одна из них не спешит с инвестициями из-за их размера.
Предположим, что если две или три участницы игры внесут свой вклад в создание сада, то этих ресурсов хватит для его закладки и последующего ухода за растениями, а сам сад будет весьма привлекательным и милым. Тем не менее, если всего одна из девушек или никто из них этого не сделают, сад будет скудным и неухоженным и не принесет радости людям. Таким образом, с точки зрения каждой участницы, существуют четыре разных исхода.
• Одна участница игры не инвестирует в сад, в отличие от двух остальных (что приводит к созданию привлекательного сада и позволяет ей сэкономить на вкладе).
• Одна участница игры инвестирует в сад, и остальные, одна или обе, – тоже (что приводит к созданию привлекательного сада, но не позволяет ей сэкономить на вкладе).
• Одна участница игры не инвестирует в сад, и только одна из двух оставшихся участниц вносит свой вклад (что приводит к созданию скудного сада, но позволяет ей сэкономить на вкладе).
• Одна участница игры инвестирует в сад, в отличие от двух остальных (что приводит к созданию скудного сада и не позволяет ей сэкономить на вкладе).
Очевидно, что первый из исходов – лучший, тогда как последний – худший. Мы хотим, чтобы более высокие показатели выигрышей соответствовали более благоприятным исходам, поэтому присваиваем первому исходу в списке выигрыш 4, а последнему – выигрыш 1. (Иногда выигрыши соответствуют порядковому номеру исхода в списке исходов. Следовательно, при наличии четырех исходов первый был бы лучшим, а четвертый – худшим, а меньшие числа обозначали бы более предпочтительные исходы. Читая книгу по теории игр, обратите особое внимание на то, какую систему обозначений выбрал автор; если вы пишете о теории игр, вам следует точно указать используемую систему обозначений.)
В двух средних исходах присутствует некоторая неоднозначность. Предположим, каждый игрок ценит привлекательный сад более высоко, чем собственный вклад в его создание. В таком случае исход, указанный в списке вторым, обеспечит выигрыш 3, а исход под номером три – выигрыш 2.
Допустим, участницы игры ходят поочередно. Эмили получает право первого хода и решает, инвестировать ли ей в сад. В свою очередь Нина, глядя на выбор Эмили, решает, стоит ли и ей так поступить. И наконец, Талия, оценив выбор Эмили и Нины, делает аналогичный выбор