Стратегические игры. Доступный учебник по теории игр - стр. 23
В следующих трех главах мы рассмотрим эти два чистых случая. В главе 3 проанализируем игры с последовательными ходами, в которых вы должны думать на несколько шагов вперед, а действовать сейчас; глава 4 и глава 5 посвящены играм с одновременными ходами; в них вам предстоит совершить невозможное в ситуации «Он думает, что я думаю, что он думает…». В каждом из этих случаев мы предложим вам простые инструменты выполнения такого анализа (деревья и таблицы выигрышей), а также объясним ряд простых правил, которым вы должны следовать.
Изучение игр с последовательными ходами позволяет определить, когда выгодно делать ход первым, а когда вторым. Грубо говоря, это зависит от относительной важности обязательств и гибкости в рассматриваемой игре. Например, в такой игре, как экономическая конкуренция между соперничающими на рынке компаниями, применяется преимущество первого хода, если одна компания, твердо решив вести агрессивную конкурентную борьбу, может опередить конкурентов. Однако в случае политической конкуренции кандидат, который занял твердую позицию по тому или иному вопросу, может дать соперникам четкую цель для контрагитации, а значит, в такой игре мы наблюдаем преимущество второго хода.
Умение учитывать все эти факторы и достигать их оптимального соотношения может помочь вам разработать способы манипулировать порядком ходов в свою пользу. Это, в свою очередь, приводит к изучению таких стратегических шагов, как угрозы и обещания, которые мы будем рассматривать в главе 9.
В простых играх, таких как шахматы или футбол, есть победитель и побежденный. Победа одного игрока означает поражение другого. Точно так же в азартных играх выигрыш одного игрока означает проигрыш другого, то есть общий итог равен 0. Именно поэтому эти ситуации называют играми с нулевой суммой. Общая идея состоит в том, что в подобных играх интересы игроков полностью противоречат друг другу[12]. Такой конфликт интересов возникает в случаях, когда игроки делят между собой фиксированную сумму возможного выигрыша, в каких бы единицах он ни измерялся – в ярдах, долларах, акрах или шариках мороженого. Поскольку общий итог не всегда равен 0, термин «игра с нулевой суммой» часто заменяется термином «игра с постоянной суммой». Мы будем использовать эти термины как синонимы.
Большинство экономических и социальных игр не относятся к категории игр с нулевой суммой. Торговля или экономическая деятельность в более общем смысле предлагает широкие возможности для сделок, приносящих пользу всем. Совместные предприятия могут использовать совокупность навыков отдельных участников, тем самым создавая синергию, позволяющую выпускать больше продукции, чем они могли бы произвести по отдельности. Однако в этих случаях интересы партнеров не всегда совпадают: партнеры могут сотрудничать, чтобы создать больший общий «пирог», но начнут конфликтовать, когда дело дойдет до его дележа.