Статистические методы, используемые в маркетинговых исследованиях - стр. 7
Использование логистической регрессии распространяется на решение задач, связанных с моделированием взаимосвязи и классификацией наблюдений. Она находит применение в скоринге: банковском (на ее основе возможно построение рейтинга заемщиков и управления кредитными рисками); потребительском (для моделирования потребительского поведения).
Регрессия мультиномиальная логистическая
Фото из источника в списке литературы [5]
В качестве логистической регрессии мультиномиальной рассматривают общий случай модели логистической регрессии, в ней у зависимой переменной имеются категории в количестве более двух.
Измерение зависимой переменной (ковариаты) в рассматриваемой регрессии возможно в таких шкалах, как порядковая и номинальная. В качестве нее может выступать переменная потребительского выбора торговой марки. Переменные независимые (факторы) могут быть количественными либо категориальными.
В данной модели для каждой из категорий переменной зависимой предусматривается построение уравнения логистической бинарной регрессии. Причем одной из категорий переменной зависимой отводится роль переменной опорной, и происходит сравнение с ней всех других категорий.
Посредством уравнения мультиномиальной логистической регрессии прогнозируется показатель вероятности принадлежности к каждой категории зависимой переменной согласно значениям переменных независимых.
2.4 Пробит-модель регресси. Регрессия Кокса. Анализ временных рядов
Пробит-модель регрессии
Фото из источника в списке литературы [6]
Пробит-модель является статистической моделью бинарного выбора, используемой для того, чтобы предсказывать вероятность возникновения какого-то события на базе функции нормального стандартного распределения.
Модель пробит-регрессии, подобно модели логистической регрессии, относят к виду моделей бинарного выбора. По этой причине задачи ее построения и функции такие же, как в логит-модели.
В модели пробит-регрессии выражение расчетного значения зависимой переменной выступает в качестве значения функции нормального стандартного закона распределения. Пробит является значением, для которого исследователи вычисляют функцию нормального стандартного распределения. Имеет место зависимость значения пробита от комбинированных линейных значений факторных переменных. Для пробит-модели (также как и для логит-модели) зависимая переменная – дихотомическая. К факторам в пробит-модели предъявляется требование, чтобы они были количественно выраженными либо категориальными, но преобразованными в переменные дихотомические.
Применение пробит-модели относительно сферы аналогично применению логистической регрессии. Если осуществить моделирование и классификацию по пробит-модели и также по модели логистической регрессии, то результаты окажутся весьма сходными. Но в некоторых случаях результаты могут разниться.