Размер шрифта
-
+

Руководство по спортивной медицине - стр. 6

При наблюдении в микроскоп было обнаружено, что при сокращении ширина А-дисков не изменяется, тогда как I-диски (изотропные) и зоны Н становятся более узкими, т. е. изменяется ширина взаимного перекрытия актиновых и миозиновых нитей. Исходя из этого, A. F. Huxley в 1954 г. предложил для объяснения механизма мышечного сокращения теорию скольжения нитей (рис. 1).


Рис. 1. Модель механизма сокращения – миозиновая нить с поперечными мостиками, прикрепленными к актиновым нитям:

а – схема сокращения мышечного волокна в пределах саркомера; Z – пластинка;

б —схема работы поперечного мостика (единицы соединения актина и миозина)


Согласно теории, укорочение саркомера происходит благодаря активному скольжению тонких актиновых нитей относительно толстых миозиновых в пределах саркомера. Длина самих нитей при этом не изменяется. Во время сокращения каждая головка миозина или поперечный мостик могут связывать миозиновую нить с актиновой. Наклоны головок создают объединенное усилие, и происходит «гребок», продвигающий актиновую нить к середине саркомера. Биполярная организация молекул миозина обеспечивает возможность скольжения актиновых нитей в противоположном направлении в обеих половинах саркомера.

Механизм этого процесса может быть объяснен за счет электромеханического сопряжения, т. е. передачи сигнала возбуждения с мембраны на миофибриллы. Ключевую роль при этом играют ионы Са>2+. В расслабленном состоянии, т. е. при низкой концентрации ионов Са>2+, регуляторные белки – тропомиозин и тропонин C – блокируют прикрепление поперечных мостиков миозина к актиновым нитям. Возбуждение вызывает высвобождение ионов Са>2+ из саркоплазматической сети. Это ведет к тому, что концентрация Ca при возбуждении внутри волокна увеличивается и ионы Са>2+ соединяются с молекулой тропонина. В результате происходит смещение молекулы тропомиозина, что обеспечивает возможность прикрепления миозиновых поперечных мостиков к актиновым нитям. Это конформационное изменение инициирует ряд процессов, приводящих к сокращению мышцы. Следовательно, в покое белки тропонин и тропомиозин препятствуют соединению мостиков миозина с актином. Активация Са>2+ ведет к инактивации регуляторных белков, и происходит присоединение мостиков.

Следующий вопрос состоит в том, как мышца преобразует химическую энергию в механическую. Сами сократительные белки – актин и миозин не обладают аденозинтрифосфатазной (АТФазной) активностью. Однако, связавшись с актином, миозиновая головка поперечного мостика в присутствии ионов Мg>2+ приобретает активность АТФазы и катализирует расщепление аденозинтрифосфорной кислоты (АТФ). Молекула АТФ связывается с активным АТФазным центром головки миозина и отделяет ее от актиновой нити. Гидролиз сопровождается конформационными изменениями головки молекулы миозина, переводя ее в высокоэнергетическое состояние.

Страница 6