Размер шрифта
-
+

Ритм Вселенной. Как из хаоса возникает порядок - стр. 48


Спустя несколько лет о работе Уинфри стало известно молодому японскому физику по имени Йосики Курамото. Его также увлекал феномен самоорганизации во времени, и он хотел найти способ проникнуть в математическую суть этого феномена. В 1975 г. он сосредоточился на изучении более простой и абстрактной версии модели Уинфри и в конечном счете ему удалось показать, как можно решить эту задачу.

Это было поистине выдающееся достижение. Речь шла о системе бесконечно большого числа дифференциальных уравнений, причем все эти дифференциальные уравнения были нелинейными и связаны друг с другом. Такие вещи практически не поддаются решению. Немногие исключения из этого правила подобны бриллиантам. Такое сравнение представляется вполне оправданным ввиду математической красоты этих исключений, а также благодаря свету, который они проливают на внутренние аспекты нелинейности. В данном случае анализ, выполненный Курамото, выявил сущность групповой синхронизации.

На первый взгляд не так-то просто понять, что же такого особенного в структуре модели, предложенной Курамото. Как и в работе Винера, модель Курамото описывает огромную популяцию осцилляторов, характеризующуюся колоколообразной кривой распределения естественных частот; как и в модели Уинфри, каждый осциллятор одинаково взаимодействует со всеми остальными осцилляторами[43]. Важнейшая инновация, предложенная Курамото, заключается в замене функций влияния и чувствительности на особый вид взаимодействия – очень симметричное правило, которое воплощает и уточняет концепцию подтягивания частот, предложенную Уинфри.

Природу этого взаимодействия легче всего понять для популяции, состоящей лишь из двух осцилляторов. Вообразите их как друзей, бегущих вместе по дорожке стадиона. Поскольку эти осцилляторы – друзья, они хотят разговаривать во время бега, поэтому каждый из них несколько корректирует предпочтительную для себя скорость бега. Правило Курамото заключается в том, что быстрый бегун несколько замедляется, а медленный бегун ускоряет свой бег в такой же степени. (Если быть более точным, величина этой коррекции является функцией синуса угла между ними, умноженного на число, называемое силой связи; это число определяет максимально возможную коррекцию.) Это корректирующее действие ведет к синхронизации осцилляторов. Однако, если разность их естественных скоростей оказывается слишком большой по сравнению с силой связи, они не смогут компенсировать разницу в своих физических способностях. Более быстрый бегун постепенно оторвется от своего более медленного товарища; в этом случае им обоим следовало бы подумать о выборе более подходящего для себя партнера по бегу трусцой. Математическая привлекательность этого правила заключается в его симметричности. В отличие от первоначальных формул Уинфри, в этом случае на беговой дорожке нет каких-либо особых мест (когда разные места соответствуют разным характерным событиям в биологическом цикле активности). Для Курамото все места неразличимы между собой. Нет никаких вех.

Страница 48