Риски цифровизации: виды, характеристика, уголовно-правовая оценка - стр. 6
Задача поиска ассоциативных правил – определение часто встречающихся наборов объектов в большом множестве таких наборов. Прикладные задачи, решаемые установлением ассоциативных правил:
– изучение событий, выявление причинно-следственных связей в поведении поставщиков, покупателей, сотрудников, инвесторов, конкурентов и иных лиц, оказывающих или могущих оказать влияние на компанию;
– анализ покупательской корзины – определение сочетаний товаров, пользующихся стабильным спросом, в целях оптимизировать поиск наборов покупателями;
– стимулирование спроса за счет формирования дополнительных предложений, проведения эффективных маркетинговых акций, продвигающих среди аудитории дополнительные товары.
Задача фильтрации выбросов – обнаружение в обучающей выборке небольшого числа нетипичных объектов. К задаче сводятся проблемы
– обнаружение мошенничества, т. е. выявление аномальных финансовых показателей по выручке или объему продаж, что помогает обнаружить факт кражи денежных средств или передачу информации конкурентам;
– обеспечение информационной безопасности. В частности, аномальное время работы сотрудника или его нетипичные действия дают возможность установить факт инсайдерской деятельности либо идентифицировать несанкционированный доступ к информационной системе;
– выявление ошибок при экономических расчетах, т. е. фильтрация выбросов привлекает внимание к ошибочно введенной в ручном режиме информации за счет определения ее нетипичности или отсутствия смысла.
Задача сокращения размерности заключается в том, чтобы при помощи некоторых функций преобразования перейти к наименьшему числу признаков объекта, не потеряв при этом никакой существенной информации. Решение задачи дает возможность оптимизации:
– производственных процессов – благодаря выявлению действий, не влияющих на эффективность;
– расходов на содержание сложных систем;
– использования вычислительных ресурсов.
Задача заполнения пропущенных значений – замена недостающих значений в матрице «объекты-признаки» их прогнозными значениями. Метод замены используется в социальных исследованиях, когда данные собираются не в полном объеме; для восстановления данных при сбоях или преднамеренном уничтожении; при прогнозировании удовлетворенности от продукта на основе данных по другим продуктам и другим потребителям.
Кроме обучения с учителем и без учителя, в машинном обучении применяются и другие методы:
Обучение с подкреплением – процесс, при котором происходит обучение модели, не имеющей сведений о системе, но обладающей возможностью производить действия в ней. Действия переводят систему в новое состояние, и модель получает от системы некоторое вознаграждение. Подобное обучение используется: