Риски цифровизации: виды, характеристика, уголовно-правовая оценка - стр. 20
Свойства систем Больших данных. Определяющими свойствами, по которым системы анализа и сбора информации относят к классу Big Data, являются объем обрабатываемых данных, их разнородность, возможность горизонтального масштабирования. Выделяют также ряд потребительских свойств системы, такие как скорость обработки данных, потребительская ценность, достоверность и другие.
Основное свойство систем Big Data – обработка крайне больших массивов данных объем которых постоянно и с большой скоростью увеличивается. Речь идет о данных миллионов финансовых операций, десятках миллионов переходов на веб-сайтах интернет-магазинов, сотен миллионов значений датчиков погоды, снимающих показания по всему миру, миллиардов записей пользователей на персональных страничках социальных сетей, десятков миллиардов действий пользователей поисковых систем и мобильных приложений.
Разнородность данных – это возможность обработки в системе разнообразных типов данных и их структур. Это свойство характеризует возможность системы проводить анализ неструктурированных данных: «сырых» текстов, медиафайлов – аудиофайлов, видеофайлов и файлов изображений; слабоструктурированной информации: например, новостных каналов, электронных таблиц; структурированных данных реляционных СУБД и данных, полученных в виде структурированного ответа на запрос на специализированных языках работы с данными.
Скорость обработки означает возможность системы принимать и обрабатывать данные в необходимом объеме за ограниченное время. Многие системы Big Data предназначены для сбора информации из большого количества источников в режиме реального времени и их анализа также в режиме реального времени. Пример – медицинские устройства, предназначенные для сбора данных о здоровье и мониторинга состояния пациентов. Предназначение и важность этих систем требует собирать, анализировать эти данные и затем передавать результаты медицинскому персоналу за минимальное количество времени. Необходимость реализации интернета вещей медицинского оборудования создает запрос на обеспечение высокой скорости передачи и обработки данных.
Возможность горизонтального масштабирования – это возможность увеличить производительность и емкость системы путем подключения аппаратных или программных ресурсов таким образом, чтобы они работали как единое логическое целое. Этот механизм также называется кластеризацией вычислительных систем. Если кластеру требуется больше ресурсов для повышения производительности, обеспечения более высокой доступности, администратор может масштабировать вычислительный ресурс, добавляя в кластер больше серверов и/или хранилищ данных.