Размер шрифта
-
+

Рациональность. Что это, почему нам ее не хватает и чем она важна - стр. 17

Конечно, некоторым критическое мышление отказывало из-за сексизма, личных предрассудков и профессиональной ревности. Вос Савант – привлекательная, элегантная женщина, не отмеченная академическими регалиями, автор колонки в бульварном журнале, где публикуются сплетни и кулинарные рецепты; ее вовсю высмеивают в вечерних ток-шоу[44]. Она не соответствует стереотипу математика; к тому же, прославившись благодаря Книге рекордов Гиннесса, вос Савант сделалась соблазнительной мишенью для нападок.

Но часть проблемы – сама проблема. Как и в вопросах с подвохом в тесте когнитивной рефлексии и в задаче выбора Уэйсона, в парадоксе Монти Холла есть что-то, выставляющее напоказ бестолковость нашей системы 1. Но и система 2 здесь тоже не блещет. Многие не в силах усвоить ответ даже после объяснения; в их числе сам Эрдёш, который, поправ идеалы математической науки, позволил себя убедить только после многократной симуляции игры[45]. Многие упирались, даже воочию пронаблюдав за симуляцией, и даже после того, как неоднократно сыграли на деньги. В чем же причина такого резкого расхождения между нашей интуицией и законами случайности?

Разгадка кроется в самонадеянных объяснениях, которыми всезнайки оправдывали свою ошибку, – зачастую это просто решения, бездумно перенесенные с других задач по теории вероятности. Одни настаивают, что каждой из неизвестных альтернатив (в данном случае закрытых дверей) нужно приписать равную вероятность. Это верно, если речь идет о симметричном инвентаре для азартных игр вроде монет или игральных костей, и это разумная отправная точка для рассуждений, если вам абсолютно ничего не известно об альтернативах. Но это отнюдь не закон природы.

Другие представляют себе цепочку причин и следствий. Козы и автомобиль заняли свои места до того, как ведущий открыл дверь, и то, что он ее открыл, не меняет их местоположения. Указание на отсутствие причинно-следственных связей – хороший способ развенчать другие заблуждения, такие как «ошибка игрока», поддавшись которой игроки в рулетку почему-то думают, что после того, как несколько раз подряд выпало «красное», в следующем раунде должно выпасть «черное», хотя на самом деле рулетка ничего не помнит и результат одного ее вращения никак не зависит от другого. Один из корреспондентов вос Савант снисходительно объяснял:

Представьте себе забег, в котором участвуют три лошади с равными шансами на выигрыш. Если лошадь № 3 упадет в пятидесяти метрах от старта, шансы каждой из двух оставшихся лошадей составляют уже не один к трем, но один к двум.

Страница 17