Поворотные времена. Часть 2 - стр. 65
Правда, анализируя квантовую механику, авторы «Эволюции физики» замечают, что дело здесь сложнее. При описании, например, световых явлений мы вынуждены пользоваться двумя исключающими друг друга картинами реальности, рассматривать эти явления как бы стереоскопически, с двух принципиально различных точек зрения. Более того, Эйнштейну было ясно, что и структура общей теории относительности при таком повороте подобна структуре квантовой теории. Ведь геометрия реального пространства-времени определяется с помощью закона преобразования, связывающего разные, локально определенные псевдоклассические геометрии, представляющие пространственно-временные характеристики возможной экспериментальной ситуации (наблюдения, измерения). Такое отношение между экспериментом и теорией, соответственно между классической физикой и неклассической не нарушало еще, по мнению Эйнштейна, классического идеала теоретического знания в отличие, например, от принципиальной статистичности квантовомеханических законов.
Для Гейзенберга, как и для Бора, осмысление квантовой теории требовало пересмотра именно этого классического идеала знания. Дополнительность двух классических систем при описании квантовой реальности возведена Бором в принцип, который и стал основанием нового взгляда на историю физики. «Ситуация, сложившаяся в квантовой механике, – говорит Гейзенберг, – в двух весьма характерных отношениях отличается от ситуации в теории относительности: во-первых, невозможностью прямо объективировать математически описанные обстоятельства, во-вторых, – и это отличие, пожалуй, даже более важно, – вытекающей отсюда необходимостью продолжать использование понятий классической физики»167. А это значит, что система понятий классической механики наряду с другими классическими системами сохраняют свою силу не просто в качестве предельного случая, а в качестве равноправных дополняющих друг друга способов объективного представления квантовой реальности. Именно в этой связи и возникло понятие «замкнутой системы понятий».
Отношение включения по принципу соответствия сталкивается здесь с отношением сосуществования по принципу дополнительности. Классическая механика содержится в теории относительности и в квантовой механике как предельный случай, когда скорость света можно считать бесконечно большой или соответственно планковский квант действия – бесконечно малым. Ho классическая механика и отчасти электродинамика необходимы также и «как априорное основание для описания экспериментов»168.
История классической физики раскрывается при этом не просто как путь к единой универсальной точке зрения, а как совокупность различных самостоятельных систем, развертывающих разные способы теоретической объективации реальности. Опыт квантовой механики позволил увидеть эту внутреннюю неоднородность классической физики. «На здание точных естественных наук едва ли можно смотреть как на связное единое целое, – говорит Гейзенберг в докладе 1934 г. – Простое следование предписанному маршруту от какой-либо данной точки не приводит нас во все другие части этого здания. Это объясняется тем, что здание состоит из отдельных специфических частей; и хотя каждая из них связана с другими посредством многих переходов и может окружать другие части или быть окруженной ими, тем не менее она представляет собой замкнутое в себе обособленное единство. Переход от одной уже законченной части к другой, только что открытой или вновь возникшей, всякий раз требует новых умственных усилий, которые должны быть направлены уже не на простое естественное развитие имеющихся представлений»