Размер шрифта
-
+

Политическая наука №1 / 2018 - стр. 14

, но теперь уже с использованием логарифмированных шкал, подтверждает это подозрение, что мы и можем видеть на рисунке 1.

Теперь и только теперь можно перейти к статистическим подходам, которые позволят протестировать предложенные логические модели. Чтобы это имело смысл, линейная регрессия должна применяться только к логарифмированным показателям продолжительности жизни правительств и числа партий – не к их количественным измерениям как таковым. Данная линейная регрессия подтверждает ожидаемый наклон, равный -2, а также позволяет найти наилучшее значение для константы – 42 года.

Итак, конечным результатом является получение количественной предсказательной логической модели: C=42 года/N >2. Эта модель «количественная и предсказательная», потому что она предсказывает не только направление изменений, но также и продолжительность жизни правительства при заданном числе партий. Модель «логическая», потому что использование в качестве делителя квадрата числа партий исходит из логических соображений.

Заметьте, что мы использовали чередующиеся шаги каждой ноги, на которых стоит наука. Мы начали с наблюдения, левой ноги, а затем обратили внимание на направленное мышление – правую ногу. Визуализация включается в «наблюдательную» ногу. Дальнейшие размышления приводят к обратной квадратной модели. Это заставило нас задаться вопросом: «Как мы можем превратить эту кривую в прямую линию?» Переход к логарифмам послужил ответом. Затем мы снова переключили наше внимание на «наблюдательную» ногу, перейдя к построению линейной регрессии на основе измененных данных. Наконец, мы должны были вновь сместить фокус нашего внимания на «мыслительную» ногу и спросить себя: «Имеет ли данный результат смысл?» Да, имеет. В частности, при большом числе партий продолжительность существования правительства будет приближаться к нулю, как это и должно быть.

Попытки скакать на одной ноге

Вообразим теперь, что за дело возьмется специалист в области статистики. Как только он установит направленность связи, все дальнейшие логические рассуждения покажутся ему излишними. Он попытается прыгать только лишь на «наблюдательной» ноге, как это показано на рисунке 3. Здесь он даже откажется от визуализации. Он загрузит сырые данные для построения регрессии, не обращая внимания на тот факт, что сама структура данных нелинейна. Без визуализации как он это узнает?17 Его компьютерная выдача покажет отрицательный знак для коэффициента наклона. Это подтвердит его предсказание о направлении связи, и это все, что такой специалист нацелен получить

Страница 14