Размер шрифта
-
+

От предвидения к власти. Как ИИ-прогнозирование трансформирует экономику и как использовать его силу в своих целях - стр. 5

Не только мы недооценивали сложности внедрения ИИ в существующие организационные структуры. Наш коллега из Университета Торонто Джеффри Хинтон, получивший прозвище Крестный Отец ИИ за свою новаторскую работу в области глубокого обучения, в своих прогнозах, возможно, также недооценивал трудности внедрения. Ранее он говорил: «Если вы, например, рентгенолог, то сейчас вы в положении койота, который уже добрался до края обрыва, но еще не посмотрел вниз и не понял, что дальше земли нет. Сейчас уже нет смысла обучать этой специальности. Совершенно очевидно, что в течение пяти лет глубокое обучение будет работать лучше, чем люди». Он был прав в том, что касается темпов технического прогресса: сегодня ИИ превосходит рентгенологов в широком спектре диагностических задач. Однако спустя пять лет после его высказывания Американский колледж рентгенологии сообщает, что число желающих освоить эту специальность не уменьшилось.

На каком-то этапе мы осознали, что переживаем уникальный момент в истории – «междувременье»: потенциал ИИ уже очевиден, но он еще не получил широкого распространения. В некоторых случаях внедрение инноваций представляет собой точечные решения. Они прямолинейны. Где-то применение ИИ сводится к простой замене старой машинной предиктивной аналитики на более новые инструменты (это происходит быстро – например, как в Verafin). Но где-то надо перестроить продукт или услуги, а также производящую их компанию, чтобы полностью реализовать преимущества ИИ и оправдать затраты на его использование. В таком случае бизнес и власти стремятся найти выгодный путь.

Мы сместили акцент с исследования нейронных сетей на изучение человеческого познания (как мы принимаем решения), социального поведения (почему в одних отраслях люди стремятся быстро освоить ИИ, а в других – сопротивляются), производственных систем (как одни решения зависят от других) и отраслевых структур (как мы скрываем некоторые решения, чтобы оградить себя от неопределенности).

Чтобы разобраться в этом, мы встречались с руководителями компаний, менеджерами по продуктам, предпринимателями, инвесторами, специалистами по обработке данных и учеными, внедряющими ИИ. Мы проводили семинары и конференции с участием экспертов и политиков, а также внимательно изучали, что работает, а что нет в сотнях финансируемых венчурными фондами стартапов в области ИИ.

Конечно, мы обратились к базовым принципам экономики в эмпирических исследованиях экономики ИИ – эта сфера бурно развивается, хотя едва ли существовала всего несколькими годами ранее, когда была написана книга

Страница 5