От предвидения к власти. Как ИИ-прогнозирование трансформирует экономику и как использовать его силу в своих целях - стр. 10
Из истории промышленности можно извлечь три урока. Во-первых, чтобы значительно повысить производительность, надо понять, что предлагает новая технология. Предприниматель, делавший ставку на электричество в 1890 году, сосредоточился бы на «экономии затрат на топливо» как на ключевом ценностном предложении. Но электричество – это не просто более дешевая замена парового двигателя. Его истинная ценность заключалась в том, что оно позволяло отделить использование энергии от ее источника. Это освободило промышленников от ограничений, связанных с размещением оборудования, что привело к целому ряду усовершенствований в планировке фабрик и рабочих процессов. Предпринимателю, предлагавшему перейти на электричество в 1920 году, следовало понимать, что ключевое ценностное предложение – это не «экономия затрат на топливо», а «создание гораздо более эффективной организации производства». Такую же картину мы ожидаем увидеть и с ИИ. Как мы уже отмечали, первоначально предлагавшиеся предпринимательские возможности были связаны с точечными решениями: так, компания Verafin заменила один способ прогнозирования другим – более качественным, быстрым и дешевым.
Нам также известны прикладные решения, требующие перепроектирования устройств или продуктов. Таковы роботы или приложения на ваших гаджетах, реализованные на основе ИИ. Например, камера смартфона, распознающая ваше лицо, сконструирована определенным образом. К ней прилагается аппаратное обеспечение для защиты передаваемой информации. Пожалуй, наиболее заметно к инновациям такого рода подтолкнуло вложение миллиардов долларов в разработку и запуск автомобилей, которые могли бы самостоятельно передвигаться в существующих дорожных условиях. Хотя внешне они ничем не отличаются от обычных автомобилей, их внутреннее устройство существенно изменено и включает датчики, средства бортовой обработки данных и последующего управления машиной.
В будущем мы увидим множество высокоэффективных системных решений на основе ИИ. В этой книге мы рассмотрим как возможности, так и проблемы, связанные с их реализацией.
Во-вторых, осознав, в чем состоит ценностное предложение ИИ, следует поставить довольно очевидный, но при этом трудноразрешимый вопрос. Как бы мы подошли к разработке наших продуктов, услуг или предприятий с нуля с учетом уже имеющихся знаний об ИИ? Многоэтажные фабричные корпуса возникли не в традиционных отраслях, а в тех, что появились в 1900-х годах, то есть были новыми на тот момент. Это табачная промышленность, производство металлоизделий, транспортного оборудования и, собственно, электрооборудования. История повторяется в наши дни: ориентированные на ИИ системы прежде всего складываются в инновационных цифровых отраслях современной экономики: в поиске, электронной коммерции, стриминговом контенте и социальных сетях.