Размер шрифта
-
+

Ошибки в оценке науки, или как правильно использовать библиометрию - стр. 14

Еще задолго до создания в начале 1960-х годов Индекса научного цитирования некоторые ученые стали анализировать количественную динамику публикаций в своих дисциплинах. В 1935 году, изучая кривую роста числа публикаций, посвященных фиксации азота растениями, ученые-агрономы вывели простую, но впоследствии востребованную математическую модель: логистическая кривая, характеризующаяся резким ростом с последующим насыщением[45]. Другой пример использования библиометрии относится к институциональному уровню: сотрудники исследовательской лаборатории компании «Дженерал электрик» в Нью-Йорке показали, что анализ публикаций является полезным методом для идентификации самых активных центров в той или иной научной области[46], а также для оценки уровня фундаментальных научных исследований в научно-производственных лабораториях[47].

Хотя эти примеры ограничены по своему охвату, они продемонстрировали пользу такого рода количественного анализа науки, который теперь благодаря библиометрическим базам данных стало возможно применять к совокупности научных дисциплин в глобальном масштабе[48]. Анализ временной динамики научного производства, учитывающий особенности разных баз данных, в рамках одной страны, региона или институции в самом деле дает важную информацию, которую невозможно получить другими путями. Поиск по ключевым словам (адрес, институция, термин) также позволяет оценить тренды развития отдельных научных областей (спад или, напротив, рост) более точно, чем это мог бы сделать даже самый маститый исследователь. Ни один человек не мог бы иметь всеобъемлющее видение науки в отсутствие библиометрических данных, которые также позволяют конструировать показатели, отражающие динамику отдельных научных областей. Так, например, как показано на ил. 7, базы данных наглядно демонстрируют небывалый рост китайской научной продукции начиная со второй половины 1990-х годов (ниже мы более подробно проанализируем эту продукцию по разным научным областям – химия, нанотехнологии, математика и пр.). Благодаря такого рода данным легко заметить и быстрое падение научного производства в России после распада СССР в начале 1990-х годов, а также его новый подъем в 2000-е годы. Полученные таким образом серии данных по разным странам можно соотносить с другими переменными. Так, было доказано, что общее число публикаций в данной стране (так же как и число патентов[49]) напрямую связано с ее валовым внутренним продуктом, то есть научное развитие практически невозможно отделить от экономического

Страница 14