Размер шрифта
-
+

Методы определения производных функций и нейросети.Выполнение экзаменационных заданий. - стр. 4

если D = 0, то x1=x2;

если D < 0, то корней нет.

Теорема Виета:

x1+ x2 = – b/a; x1*x2 = c/a

Приведенное квадратное уравнение:

x^2 + px + q = 0

x1+ x2 = – p; x1*x2 = q

Если p =2k (p – четное), то x1, 2 = – k +– (k*2 – q)^1/2


4. Логарифмы.

Если log a от (x) =b, то a^b = x (a>0, a =/ 1,x>0);

a^(log a от (x)) = x; log a от (a) = 1; log a от (1) = 0;

log a от (b) =1/ log b от (a);

log a от (x*y) = log a от (x) + log a от (y);

log a от (x/y) = log a от (x) – log a от (y);

log a от (x^k) = klog a от (x);

log a^k от (x) =(1/k) log a от (x)

Замена основания:

log a от (x) = log c от (x)/ log c от (a) , c > 0 и c=/1

5. Прогрессии.

Арифметическая

a(от n членов прогрессии) = a(n – 1) +d; 2a(n) = a(n – 1)+ a(n – 2); a(n) = a1 +d(n – 1);

Cумма n членов арифметической прогрессии:

S(n) = n/2*(a1 + an)

Геометрическая

b(n) (n – 1)*q, q=/1; b(n) = b1*q^(n – 1);

[b(n)]^2 = b(n – 1)* b(n + 1)

Cумма n членов геометрической прогрессии:

S(n) = b1*(1 – q^n)/(1 – q)

Cумма членов бесконечно убывающей геометрической прогрессии:

S = b1/(1 – q)


6.Тригонометрия.


Основные тригонометрические тождества:

(sin B)^2 + (cos B)^2 = 1

tg B = sin B/ cos B; ctg B = cos B/ sin B;

sec B =1/ cos B; cosec B =1/ sin B;

tg B*ctg B = 1; 1 + (tg B)^2 = 1/(cos B)^2;

1 + (ctg B)^2 = 1/(sin B)^2


Формулы сложения и вычитания аргументов тригонометрических функций:

sin(B + Z) = sinB*cosZ + sinZ*cosB

sin(B – Z) = sinB*cosZ – sinZ*cosB

cos(B + Z) = cosB*cosZ – sinZ*sinB

cos(B – Z) = cosB*cosZ + sinZ*sinB

tg(B + Z) = (tgB + tgZ)/(1 – tgB*tgZ)

tg(B – Z) = (tgB – tgZ)/(1 + tgB*tgZ)

Четность и нечетность тригонометрических функций:

sin(– B ) = – sinB; cos(– B) = cosB; tg(– B) = – tgB;

ctg(– B) = – ctgB; sec (– B) = secB; cosec(– B) = – cosecB

Формулы двойного аргумента:

sin2B = 2sinB cosB;

cos2B = (cosB)^2 – (sinB)^2 = 2(cosB)^2 – 1 =1 – 2(sinB)^2

(sinB)^2 = (1 – cos2B)/2

(cosB)^2 = (1 + cos2B)/2

tg2B = 2tgB/[1 – (tgB)^2]


Формулы половинного аргумента:

[sin(B/2)]^2 = (1 – cosB)/2; [cos(B/2)]^2 =(1 + cosB)/2;

[tg(B/2)]^2 =(1 – cosB)/(1 + cosB); [ctg(B/2)]^2 = (1 + cosB)/(1 – cosB);


Формулы преобразования произведения тригонометрических функций в сумму:

sinB*cosZ = [sin(B +Z) + sin(B -Z)]/2;

cosB*cosZ = [cos(B +Z) + cos(B -Z)]/2;

sinB*sinZ = [cos(B – Z) – cos(B -Z)]/2;


Формулы преобразования суммы тригонометрических функций в произведение:

sinB + sinZ = 2 sin[(B +Z)/2]*cos[(B – Z)/2];

sinB – sinZ = 2 sin[(B – Z)/2]* cos[(B – Z)/2];

cosB + cosZ = 2 cos[(B +Z)/2]*cos[(B – Z)/2];

cosB – cosZ = – 2 sin[(B +Z)/2]*sin[(B – Z)/2];

tgB + tg Z = sin(B +Z)/ (cosB*cosZ);

tgB – tg Z = sin(B – Z)/ (cosB*cosZ);

Страница 4