Размер шрифта
-
+

Математическое моделирование исторической динамики - стр. 32

.

События 2022-23 годов показали, что изначальный тезис экономической теории о том, что экономический базис определяет надстройку, а марксистский тезис, что „Политика есть концентрированное выражение экономики “106, оказались неверными. Предугадав это явление, Жан Бодрийяр107 вёл в обиход понятия гиперреальность и симулякр. В его понимании, повторение любого события или действия существует в трех формах: копии, функционального аналога и собственно симулякра. Последнее явление является всего лишь подражанием и работает по принципу символического обмена108. Эпоха гиперреальности характеризуется утратой реальности: надстройка определяет базис, труд не производит, а социализирует, представительная власть уже никого не представляет. Учитывая все эти обстоятельства, „единственное незатронутое дело – это смерть, на чем зиждется власть и экономия”.109

§7. ДИНАМИЧЕСКИЕ МОДЕЛИ

Движение каравана определяет шаг самого медлительного осла” (Омар Хайам?)

Динамические модели позволяют описать намного более широкий спектр возможных траекторий и обладают важным преимуществом – наличием обратной связи, позволяющей системе саморегулироваться. Таким образом, формальный математический аппарат незаменим, когда надо строго связать набор предположений относительно системы с прогнозами ее динамики, описываемых параметрами. Например, в экономико-демографических моделях это число людей и ресурсы, которые производит общество, в социально-политических это также население и политическая стабильность110, военно-политических – военно-технический потенциал, мобилизационные ресурсы и логистика. В них в качестве динамических переменных могут выступать геополитическая мощь и энтропия. Они обычно характеризуются нелинейными обратными связями, часто действующими с различными запаздываниями во времени.

Нелинейные модели являются более богатыми в функциональном смысле. В связи с этим существует настоятельная необходимость включения в инструментарий социально-экономического моделирования логистических уравнений, отражающих запаздывание во времени111. Их применение обеспечивает динамическое разнообразие, которое позволяет преодолеть ограниченность линейных систем, описывющих динамические процессы. В них также применяются временные лаги, но сложность математического аппарата112 не позволяет широко его применять.

Например, макроэкономическое моделирование с запаздыванием113 было использовано при исследовании тенденций развития и прогноз будущего развития после вмешательства регулятора. В частности, Р. Гудвин предложил ввести нелинейность запаздывания таким образом, чтобы полученные уравнения имели устойчивый предельный цикл. Его экономические предположения и модель вызвали ряд критических замечаний, а полвека спустя выяснилось, что им в математических преобразованиях допущена ошибка

Страница 32