Размер шрифта
-
+

Математическое моделирование исторической динамики - стр. 34

переменными.



Схема 2. Консервативная (а) и диссипативная (б) системы

Диссипативные системы характеризуются тем, что с течением времени облако отображающих точек съёживается и концентрируется в одном или нескольких аттракторах119 – подмножествах фазового пространстранства (траекториях). С точки зрения динамики это означает, что режим, возникший в системе, предоставленной самой себе, через некоторый период времени не зависит от её начального состояния120. Каждый аттрактор инвариантен121, т.е. траектория, начавшаяся в нём, за его пределы не выходит. При наличии в фазовом пространстве двух или более аттракторов имеет место мультистабильность, а множество точек фазового пространства, из которых траектории выводят на аттрактор – его бассейном.

В реальном времени часто возникают переменные состояния, вблизи которых законы, управляющие дальнейшим состоянием данной системы, резко, т.е. без промежуточных переходов, меняются, вследствие чего происходит резкое изменение её характеристик. Этот феномен определяется как динамический хаос. Его природа – наличие состояний неустойчивости внутри любой динамической системы существует область, где внешнее возмущение вызывает наибольшие последствия. Она возникает там, где системные объекты удовлетворяют определению открытости122, и порождает нелинейность. Это явление состоит в том, что отклик системы непропорционален силе воздействия на нее123, т.е. реакции на возмущения непропорциональны этим изменениям. Хаотические режимы характеризуются нерегулярным изменением динамических переменных во времени. В диссипативных системах хаос ассоциируется с наличием в фазовом пространстве странных аттракторов: фрактальных множеств, притягивающих к себе траектории из некоторой прилежащей области.

В процессе своего развития каждая система проходит две стадии: эволюционную (иначе называемую адаптационной) и революционную (скачок, катастрофа). В эволюционный период происходит медленное накопление количественных и качественных изменений параметров системы и ее отдельных элементов. В результате этого происходит скачкообразный переход количества в качества, после которого из элементов старой системы формируется новая. Она, определяется неким аттрактором, образовавшимся в процессе адаптации уцелевших элементов к изменившимся условиям внешней среды.

  В точке бифуркации происходит скачкообразное изменение системы, вызваное колебаниям. Она представляет собой переломный, критический момент в развитии системы во времени и пространстве, когда происходят качественные, скачкообразные, внезапные изменения в развитии системы. При бифуркации осуществляется выбор траектории дальнейшего движения, т.е. происходит катастрофа. Множества, характеризующие значения параметров системы на альтернативных траекториях, определяются как аттракторы. В их качестве аттрактора могут выступать состояние равновесия, периодическая траектория и странный аттрактор (хаос). Когда в точке бифуркации происходит катастрофа, систему (или её часть) притягивает один из аттракторов, и она в точке бифуркации может стать хаотической и разрушиться, перейти в состояние равновесия или выбрать путь формирования новой упорядоченности, т.е. выступает в новом качестве.

Страница 34