Магия чисел. Математическая мысль от Пифагора до наших дней - стр. 36
Геометрия Египта и Вавилонии еще не оторвалась от своих сугубо утилитарных корней, когда Фалес привез ее в Грецию. Она продолжала в основном заниматься эмпирическими правилами исчисления площадей и объемов.
Предположение о паре равных углов, созданных двумя пересекающимися прямыми линиями, едва ли пришло бы в голову практичным умам, занятым строительством пирамид и рытьем каналов. И все же это предположение часто требуется при доказательстве других предположений, которые ни очевидны, ни бесполезны. Это справедливо и для идеальных абстрактных линий в геометрии, не предназначенных для простых практичных умов, которые не воспринимают их серьезно. В переходе от конкретики чувственного опыта к абстракции идеальных конструкций Фалес совершил прорыв в вечность, опередив своих современников на тысячи лет и целую вселенную.
Вторым его столь же эпохальным деянием стало предположение о том, что некоторые абстракции геометрических фактов, выявленных обычным наблюдением, могут быть выведены из абстракций фактов простейшего уровня, но того же рода. Как утверждают, он «доказал» некоторые из своих теорем «ощутимым», «интуитивным» или «чувственным» методом египтян, говоря: «Я так вижу». Другие же теоремы, и в этом кардинальное отличие для развития науки, математики и философии, он, по описанию, «доказал», или попытался прийти к доказательству «абстрактным», «обобщенным» или «универсальным» методом классических греческих математиков. Вольное толкование последних оправдано обстоятельствами, при которых это было сделано. Адресованы тексты были греческим математикам, жившим много позже Фалеса. Для этих людей греческий метод доказательства означал только прямые дедуктивные рассуждения.
Дабы не воздавать хвалу Фалесу больше, чем он того заслуживает, следует упомянуть, что отдельные историки признают, что он правильно пользовался дедуктивным методом, но не осознал всеобщность процесса: подробное изложение допущений с последующими строго логическими и последовательными выводами. С большей очевидностью, чем сейчас была приведена, подобные выводы не могут быть опровергнуты, как и не могут быть подтверждены. Любой компетентный критик не позволит себе отрицать вклад Фалеса, которому отдают должное за частичное внедрение доказательного процесса в математике. По-настоящему же хвала за развитие полноценного дедуктивного метода воздается отцу западной магии чисел Пифагору. Фалес, скорее всего, был лишен магии и был привержен одному только разуму. Два следующих факта из безвозвратного прошлого могут полностью исчерпать тему его вклада как в математику, так и в философию.