Размер шрифта
-
+

Магия чисел. Математическая мысль от Пифагора до наших дней - стр. 34

/>4 и >1/>4) в «водороде» совпало с расчетными. Как можно объяснить подобные предсказания?

Объяснений было представлено много, даже слишком много, чтобы предположить, что хоть одно окажется убедительным. Только самое позднее из них (1930) следует рассмотреть в данной работе, как наиболее уместное относительно магии чисел, благодаря древней истории которой и появилось на свет. Человеческий разум должен предполагать результат любого научного эксперимента до того, как опыт будет произведен, потому что можно осознавать и рассуждать последовательно только при одном условии, математическом подходе, и, более того, математические истины бессмертны. Заявлено слишком жестко, но не слишком пристрастно, как в большинстве революционных научных кредо ученых последних трех столетий. Нечто подобное уже произносилось, к этому возвращались много раз и в самых разных формах, с VI века до н. э. и вплоть до наших дней.

Некоторые математики чувствуют необходимость подчинения неизбежности. Возникает ощущение, будто их открытия и находки ожидали их в неизвестном, но вполне узнаваемом будущем. Рационалист сказал бы, что математик проектирует себя в иллюзорное время своего собственного изобретения. Будущее, в которое, как ему представляется, он проникает, на самом деле есть его собственные настоящие абстракции и доказательства – плоти и духа математики. Постоянство и универсальность математики основываются на ее абстрактности, очевидной необходимости или «обреченности» как сопутствующей строгости формальной логики.

Всеми, кто верит, что математика и логика есть плоды человеческого сознания, и необходимость и универсальность воспринимаются лишь как преходящие признаки. Сторонники теории о том, что числа были скорее найдены, чем изобретены, обнаруживают в математике бесспорное доказательство существования высшего и вечного разума, наполняющего вселенную. Первые чтут в математике гибкость и способность меняться, последние видят в математике откровение постоянства в бесконечности пространства, все несовершенство которого вносится лишь неадекватностью человеческого восприятия. По мере продвижения в направлении более ясного осознания бесконечности несовершенство пропадет, и математика засияет ярче, как безупречное олицетворение вечной истины.

Первые признаки того, что в VI веке до н. э. появление подобного учения было вполне разумно и возможно, видны на примере полудюжины простых утверждений о прямых линиях и окружностях; и, как гласят предания, Фалес некоторые из них даже доказал. Если прямая линия проходит через центр окружности, она делит окружность на две равные во всех отношениях части.

Страница 34