Размер шрифта
-
+

Каталитический риформинг бензинов. Теория и практика - стр. 26

Поскольку модуль Тиле изменяется пропорционально квадратному корню из величины скорости реакции, его значение для реакции циклизации будет в первом приближении в 5,5 раза меньше – около 0,06. Это означает, что циклизация может проходить в кинетическом режиме, и ее ускорение возможно за счет уменьшения размера пор и увеличения удельной поверхности носителя.

Снижению диффузионных затруднений способствует также экзотермичность реакции циклизации.

Вместе с тем необходимо учитывать, что быстрые реакции расширения кольца и последующего дегидрирования, являющиеся промежуточными стадиями в ароматизации, будут испытывать все большее диффузионное торможение при уменьшении размера пор, и при определенном размере пор будут снижать общее превращение.

Оптимальная поровая структура должна обеспечивать баланс между реакциями, контролируемыми кинетикой, и реакциями, находящимися под диффузионным контролем.

В работе [46] приведены результаты исследования реакции дегидроциклизации н-гептана на платинорениевых катализаторах в зависимости от величины удельной поверхности и распределения пор носителя. В работе использовался катализатор с размером частиц 0,3–0,75 мм. Целью исследования


было определение поровой структуры катализатора риформинга, обеспечивающей максимальную конверсию н-гептана


в толуол.

Некоторые выводы по материалам исследования представлены ниже. В частности, было показано, что активность катализаторов, имеющих одинаковое содержание металлов, но различную поровую структуру, может отличаться в несколько раз.

1. Отсутствует прямая корреляция между активностью


и величиной удельной поверхности катализатора; при оценке активности должна учитываться поровая структура катализатора.

2. При увеличении температуры процесса различие в активности между катализаторами возрастает, этот эффект противоположен тому, что наблюдается при протекании реакции в кинетическом режиме.

3. Кроме того меняются лидеры: так, катализатор, показавший максимальную активность при 470 С, не является таковым при температуре 510 С, и, наоборот, катализатор-аутсайдер становится лидером при более высокой температуре.

4. Увеличение температуры приводит к росту диффузионных затруднений, и реакция перемещается в поры большего размера. Так, при температуре 470 С реакция протекает в порах с радиусом 3 нм и выше, а при 510 С доступными для реакции становятся поры с радиусом 5 нм и более.

5. При увеличении радиуса пор диффузионные затруднения уменьшаются, процесс сдвигается в сторону кинетического режима, и эффективная константа скорости химического превращения приближается к величине действительной константы скорости, достигаемой в отсутствие диффузионных ограничений; это приводит к более эффективному использованию поверхности поры: удельная активность (моль/с), отнесенная к поверхности поры, увеличивается с ростом радиуса поры.

Страница 26