Карьера продакт-менеджера. Все что нужно знать для успешной работы в технологической компании - стр. 51
Если помимо имеющихся в вашем распоряжении данных у вас есть причины полагать, что изменение будет успешным (например, оно понравилось пользователям из бета-группы), то вы можете принять потерю в 4 % как приемлемую и запустить обновление продукта.
Итоговое значение доверительного интервала может означать успех, провал или быть нейтральным. По мере сбора большего количества данных в ходе эксперимента границы доверительного интервала будут сжиматься, и мы сможем увидеть, что эксперимент покажет 1–2 % успеха.
Чем дольше длится эксперимент, тем сильнее уменьшается доверительный интервал (то есть диапазон сокращается, и мы получаем более точную информацию об ожидаемом воздействии изменений). Если к концу эксперимента интервал равен 1–2 %, это означает, что с вероятностью в 95 % тестируемые изменения улучшат показатели на 1–2 %. Это можно считать успехом.
P-значения
Другой вид расчетов, о которых вы могли слышать, это вычисление р-значения. Оно отражает вероятность получения результатов эксперимента при проигрышном или нейтральном изменении метрик. Большинство компаний в качестве порогового значения используют 0,05 (5 %), что соотносится с 95 % доверительной вероятности.
Доверительный интервал и р-значение напрямую связаны. Если р-значение ниже 0,05, нижний предел доверительного интервала при вероятности в 95 % будет выше нуля. Большинство PM предпочитают работать с доверительным интервалом, так как он дает больше информации о наилучшем и наихудшем сценарии событий.
Остерегайтесь p-хакинга
Применять пороговое значение 5 % нужно аккуратно, иначе это вызовет некоторые проблемы.
Предположим, что в результате А/В-тестирования редизайна приложения выяснилось, что с вероятностью в 95 % произошел рост использования чата. Наверняка это что-то значит, верно?
И да, и нет. Если мы на 95 % уверены, что к такому росту привел именно новый дизайн, все равно остается 5 % вероятности того, что наблюдаемое изменение было случайным.
Теперь представьте, что мы пытаемся оценить потенциальное воздействие нововведений на десятки функций: чат, профили пользователей, поиск, группы, события, экспорт данных и т. д. Установив возможный порог ошибки в 5 %, мы, скорее всего, увидим воздействие на одну из десятков функций с вероятностью в 95 %[35].
Это так называемый p-хакинг (p-hacking) – попытка выудить нужные вам значения и связи из общего объема данных. Если долго мучиться, что-нибудь получится. Просто случайно (см. «P-хакинг на примере комикса xkcd» на с. 73).
Что же делать? Действуйте методично.
Во-первых, заранее решите, что вы хотите измерить, зафиксируйте эти переменные как свою цель и не пытайтесь отследить воздействие на множество факторов сразу.