Искусственный интеллект в медицине. Как умные технологии меняют подход к лечению - стр. 11
Разновидность ИИ, отвечающего за глубокое обучение, приобрела особую значимость после 2012 г., когда была опубликована статья о распознавании образов[7], уже ставшая классической.
Число новых алгоритмов глубокого обучения искусственного интеллекта и публикаций на эту тему возросло лавинообразно (см. рис. 1.1), причем рост способности машин распознавать закономерности в огромных наборах данных носил экспоненциальный характер. Увеличение в 300 тыс. раз вычислительной мощности компьютера в петафлопсах (петафлопс – скорость работы компьютера, равная выполнению квадриллиона (10>15) операций с плавающей запятой в секунду) в течение суток обучения искусственного интеллекта является наглядной иллюстрацией изменений, наступивших после 2012 г. (см. рис. 1.2).
Рис. 1.1. Рост числа алгоритмов глубокого обучения ИИ с 2012 г. после публикации статьи о распознавании образов. Источники: график А приведен с изменениями из: A. Mislove: “To Understand Digital Advertising, Study Its Algorithms.” The Economist (2018): www.economist.com/science-and-technology/2018/03/22/to-understand-digital-advertising-study-its-algorithms. График B приведен с изменениями из: C. Mims, “Should Artificial Intelligence Copy the Human Brain?” The Wall Street Journal (2018): www.wsj.com/articles/should-artificial-intelligence-copy-the-humanbrain-153355265?mod-searchresults&page-1&pos-1.
За последние несколько лет в ведущих медицинских изданиях был опубликован ряд исследований, основанных на глубоком обучении. Многие в медицинском сообществе были искренне удивлены потенциалом глубокого обучения ИИ: в статьях утверждалось, например, что искусственный интеллект способен диагностировать некоторые типы рака кожи так же, если не лучше, чем дерматолог высшей категории; выявлять некоторые особые типы аритмий не хуже кардиолога; интерпретировать результаты медицинских изображений не хуже квалифицированного специалиста по медицинской визуализации и оценивать гистологические препараты не хуже патологоанатома; диагностировать различные заболевания глаз не хуже хорошего офтальмолога и предсказывать суицид у пациентов не хуже профессионального психиатра. Эти возможности обусловлены главным образом умением распознавать закономерности, при этом в ходе обучения машины усваивают эти закономерности на сотнях тысяч примеров (а вскоре – и на миллионах). Такие системы уже сейчас от года к году становятся все лучше и лучше, а показатель ошибок после изучения текстовых, речевых и визуальных материалов упал ниже 5 %, что выше любых человеческих возможностей (см. рис. 1.3). И хотя, вероятно, существует предел, после которого дальнейшее улучшение обучения прекратится, мы его пока не достигли. В отличие от людей, которые часто устают, пребывают в дурном настроении, подвержены действию эмоций, недосыпают или отвлекаются, машины лишены всех этих недостатков, могут работать сутки напролет, без выходных и праздников, не жалуясь на судьбу (хотя и человек, и машина могут «заболеть» и выйти из строя). Вполне понятно, что в связи с этим ребром встает вопрос о будущей роли врачей и о том, какое влияние может оказать искусственный интеллект на медицинскую практику.