Искусственный интеллект - стр. 19
Интерес вызывает то, что для некоторых задач молекулярные компьютеры очень быстро и точно находят приемлемые решения, в то время как традиционные компьютеры затрудняются это сделать. Например, решение задачи коммивояжёра, т. е. поиска кратчайшего пути обхода графа, при помощи реакций с ДНК осуществляется практически мгновенно, в то время как для обычного компьютера требуется огромное количество времени. Правда, тут есть одна тонкость, которая мешает работе обычному компьютеру, – это комбинаторный взрыв. И если в традиционной архитектуре он ведёт к увеличению времени решения, то для ДНК-компьютера требуется подготовка огромного количества вариантов нуклеотидных нитей. Соответственно, объём пробирки растёт так же, как и количество вариантов в комбинаторном взрыве.
В общем, часто биокомпьютинг можно охарактеризовать как новую парадигму вычислений, которая, в отличие от традиционной вычислительной модели, работает быстро, но при решении сложных задач с комбинаторным взрывом растёт не время вычислений, а необходимый для них объём биокомпьютера.
Вместе с тем в последнее время всё активнее разрабатывается агентный подход к построению искусственного интеллекта. В рамках этого подхода изменена точка зрения на цель построения интеллектуальной системы и считается, что построить нужно систему не с разумным поведением, а с рациональным. С одной стороны, это серьёзно облегчает задачу, поскольку, в отличие от понятий «разум» или «интеллект», понятия «рациональность» и «рациональное поведение» можно строго формализовать (например, рациональное поведение – это выбор и достижение оптимальной цели с минимизацией затраченных на это ресурсов). С другой стороны, для демонстрации рационального поведения агент должен обладать достаточной «разумностью», чтобы определить цель, составить стратегию её достижения и выполнить её.
Каждый агент – это полноценная кибернетическая машина, которая имеет систему управления, непрерывно получающую информацию с сенсорных систем агента и воздействующую на окружающую среду при помощи исполнительных устройств (или актуаторов). При этом подход не определяет сущность сенсорных систем и актуаторов – их природа может быть произвольной. Поэтому агентный подход одинаково применим как к чисто программным сущностям, работающим в некоторой искусственной среде, так и к программно-аппаратным комплексам, равно как и вообще к биологическим системам.
Общая схема агента и его взаимодействия со средой
Агентный подход интересен тем, что в его рамках можно использовать эволюционные алгоритмы, которые подбирают интеллектуальных агентов, исходя из степени их приспособленности к достижению цели. Во время взаимодействия агентов осуществляется отбор наиболее успешных, которые затем используются для генерации нового поколения агентов, среди которых опять применяются те же самые процедуры оценки и отбора. В итоге наиболее успешное поколение решает задачи и достигает целей наиболее эффективным образом. Это идеальный вариант, который сегодня сложно достижим, но стремиться к нему интересно. Также агентный подход лежит в основе так называемых многоагентных систем, в рамках которых осуществляется общее целеполагание, после чего каждому индивидуальному агенту даётся свобода действий в определённых рамках, где он имеет возможности и альтернативы по разработке и реализации различных стратегий достижения своей частной цели. В процессе этого агенты взаимодействуют друг с другом и со средой, обмениваясь информацией и выполняя запросы других агентов. Кроме того, вполне может быть использована идея так называемого «роевого интеллекта», когда каждая отдельная «особь» (то есть агент) интеллектом не обладает, но в целом «рой» (множество агентов, многоагентная система) обладает определёнными интеллектуальными способностями. Надо отметить, что всё перечисленное является одним из наиболее перспективных направлений исследований по искусственному интеллекту.