Искусственный интеллект на службе бизнеса. Как машинное прогнозирование помогает принимать решения - стр. 6
Наша книга не предлагает рецептов успеха в экономике ИИ – напротив, мы подчеркиваем его преимущества и недостатки. Чем больше данных, тем меньше конфиденциальность; чем выше скорость, тем ниже точность; чем больше независимости – тем слабее контроль. Мы не предлагаем рекомендаций для выработки оптимальной бизнес-стратегии: это ваша забота. Лучшая стратегия для компании, карьеры или страны зависит от вашей оценки соотношения плюсов и минусов. Мы разработали схему определения ключевых преимуществ и недостатков, а также способы оценки всех «за» и «против» для оптимального решения какой-либо задачи. Разумеется, даже располагая нашей схемой, вы заметите, что все меняется очень быстро и вам придется действовать, не обладая исчерпывающей информацией, но, как правило, это все же лучше пассивности.
• Новая волна ИИ принесла нам не в полной мере разум, а лишь его критическую составляющую – прогнозирование.
• Любое решение по большей части зависит от прогнозов. В экономике наработаны схемы принятия решений. Новые и не совсем понятные последствия развития прогностических технологий можно объединить с проверенной логикой экономической теории принятия решений и вывести ряд идей, помогающих сориентироваться в том, как применить ИИ в вашей организации.
• Единственного верного ответа на вопрос о том, какая стратегия или инструменты ИИ оптимальны, не существует, потому что неизбежно придется искать компромисс: больше скорость – ниже точность, больше независимости – слабее контроль, больше данных – меньше конфиденциальности. Мы предлагаем метод определения благоприятных и неблагоприятных последствий принятия связанных с ИИ решений, чтобы вы оценили потенциальную выгоду и потери в свете миссии и целей организации, а затем нашли оптимальный для вашего бизнеса вариант.
Каждый человек уже соприкасался с ИИ либо очень скоро откроет его для себя. Мы привыкли к регулярным сообщениям в СМИ о новых технологиях, изменяющих нашу жизнь. Технофилы предвкушают возможности будущего, технофобы горюют о старых добрых временах. Впрочем, все уже привыкли к бомбардировке технологическими новостями и, не задумываясь, повторяют: «Единственное, что остается неподвластным переменам, – это сами перемены». Пока не сталкиваются с ИИ. И тогда понимают, как эта технология отличается от остальных.
Некоторые IT-специалисты впервые оценили потенциал ИИ в 2012 году, когда команда студентов Университета Торонто одержала триумфальную победу на ежегодных соревнованиях по распознаванию визуальных образов ImageNet (Large Scale Visual Recognition Challenge). В последующие годы все финалисты ImageNet использовали новаторский для того времени подход «глубокого обучения»: распознавание объектов не просто игра, оно наделяет машину «зрением».