Форма реальности - стр. 24
Вот теперь вы запутались? Надеюсь, что да!
Математика не дает точного ответа на этот вопрос. Она не может вам сказать, что вы подразумеваете под словом «дыра» или «отверстие», – это ваше индивидуальное понимание. Но она может вам подсказать, что вы могли иметь в виду; а это хотя бы не даст вам споткнуться о собственные предположения.
Позвольте мне начать с раздражающе философского заключения: в соломинке два отверстия, но это одно и то же отверстие.
Здесь мы вступаем в область геометрии под названием топология. В ней нас не волнует величина объектов, их удаленность друг от друга, степень изогнутости или деформации. На первый взгляд это может показаться вопиющим отходом от темы нашей книги, а на второй – оставить вас в недоумении, не предлагаю ли я какой-то геометрический нигилизм, когда нас не заботит ничего.
Нет! Заметная часть математики состоит в том, чтобы понять, о чем мы можем позволить себе не заботиться, временно или навсегда. Такое избирательное внимание – базовая часть нашего мышления. Скажем, вы переходите улицу, и тут какая-то машина проскакивает на красный и мчится на вас. Есть множество вещей, которые вы можете учесть, планируя свой следующий шаг. Можете ли вы достаточно хорошо рассмотреть через ветровое стекло, трезв ли водитель? Какая модель у автомобиля? Надели ли вы сегодня чистое нижнее белье на случай, если в итоге вас собьют и вы будете лежать на асфальте? Все эти вопросы вы не задаете, позволяя себе не заботиться о них, и все свое сознание фокусируете на попытке определить траекторию движения машины, чтобы успеть отскочить с ее пути как можно быстрее и дальше.
Математические задачи обычно не столь драматичны, однако приводят к аналогичным процессам абстрагирования – умышленного игнорирования всех параметров, не относящихся непосредственно к стоящей перед нами проблеме. Ньютон сумел справиться с задачами небесной механики, когда понял, что небесные тела двигаются не по каким-то собственным прихотям, а по универсальным законам, применимым к каждой частице материи во Вселенной. Для этого ему пришлось заставить себя забыть о том, из чего сделан объект и какова его форма: все, что имело для Ньютона значение, – это масса объекта и расположение относительно других тел. Или шагнем еще дальше, к истокам математики. Сама идея числа состоит в том, что при вычислениях вы можете оперировать семью коровами, семью камнями или семью людьми, используя одни и те же правила подсчета и комбинирования, а отсюда уже недалеко до семи наций или семи идей. Не имеет значения (для данных целей),