Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа - стр. 7
Чтобы у читателя сложилась правильная интуиция по теории Марковица, посмотрим очень простые синтетические примеры. Начнем с портфеля, который содержит только 2 актива.
1.2.2. Пример с двумя активами
Допустим, есть какие-то 2 актива, назовем их A и B, у которых вычислили средние доходности и риски на каком-то интервале времени.
A: Более доходный с доходностью
B: Менее доходный с доходностью
На графике «Риск-Доходность» эти активы на рис. 5 изображены крупными синими точками. По горизонтальной оси графика отложены риски S, а по вертикальной оси средние доходности
Рис. 5. График "Риск-Доходность для двух активов.
Оба актива на рассматриваемом интервале времени имеют свои временные ряды ежедневных доходностей:
Здесь M, это количество торговых дней, за которые анализируется поведение этих двух активов, то есть M торговых дней, это тот интервал, за который вычислены доходности и риски активов A и B.
А портфель из этих двух активов, в свою очередь, сам тоже имеет свой ряд доходностей в эти же самые M дней:
А значит, портфель, состоящий из этих активов, имеет свою среднюю доходность и свой риск на этом же интервале M дней. И мы можем на графике «Риск-Доходность» нарисовать точку, которая соответствует этому портфелю. Положение этой точки зависит от того, как инвестор распределил свои средства по активам A и B.
Если инвестор распределил свой начальный капитал по активам A и B так, что на долю своих средств W>A он купил актив A, а на долю W>B купил актив B, то этой покупкой инвестор зафиксировал количество активов A и B в своем портфеле. Так как цены этих активов могут изменяться, то в портфеле могут изменяться и доли финансов инвестора между активами A и B. Но количество купленных активов и их соотношение не меняются, так как инвестор ничего не продает из портфеля и ничего не докупает в свой портфель в течение M дней.
Так как доходность, это относительная величина и она не зависит от количества купленных активов, то доходность портфеля в m-й день линейно зависит от доходностей двух активов в m-й день с коэффициентами пропорциональности равными долям начального распределения средств инвестора по активам: